• 套利数学
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

套利数学

78.94 九五品

仅1件

河北廊坊
认证卖家担保交易快速发货售后保障

作者[瑞士]戴尔贝恩 著

出版社世界图书出版公司

出版时间2010-09

版次1

装帧平装

货号A8

上书时间2024-11-22

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 [瑞士]戴尔贝恩 著
  • 出版社 世界图书出版公司
  • 出版时间 2010-09
  • 版次 1
  • ISBN 9787510027376
  • 定价 49.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 373页
  • 正文语种 英语
【内容简介】
in1973f.blackandm.scholespublishedtheirpathbreakingpaper[bs73]onoptionpricing.thekeyidea--attributedtor.meltoninafootnoteoftheblack-scholespaper--istheuseoftradingincontinuoustimeandthenotionofarbitrage.thesimpleandeconomicallyveryconvincingprincipleofno-arbitrage"allowsonetoderive,incertainmathematicalmodelsoffinancialmarkets(suchasthesamuelsonmodel,[s65],nowadaysalsoreferredtoasthe"black-scholes"model,basedongeometricbrownianmotion),uniquepricesforoptionsandothercontingentclaims.
thisremarkableachievementbyf.black,m.scholesandr.mertonhadaprofoundeffectonfinancialmarketsanditshiftedtheparadigmofdeal-ingwithfinancialriskstowardstheuseofquitesophisticatedmathematicalmodels.
【目录】
PartIAGuidedTourtoArbitrageTheory
1TheStoryinaNutshell
1.1Arbitrage
1.2AnEasyModelofaFinancialMarket
1.3PricingbyNo-Arbitrage
1.4VariationsoftheExample
1.5MartingaleMeasures
1.6TheFundamentalTheoremofAssetPricing
2ModelsofFinancialMarketsonFiniteProbabilitySpaces
2.1DescriptionoftheModel
2.2No-ArbitrageandtheFundamentalTheoremofAssetPricing
2.3EquivalenceofSingle-periodwithMultiperiodArbitrage
2.4PricingbyNo-Arbitrage
2.5ChangeofNumeraire
2.6KramkovsOptionalDecompositionTheorem
3UtilityMaximisationonFiniteProbabilitySpaces
3.1TheCompleteCase
3.2TheIncompleteCase
3.3TheBinomialandtheTrinomialModel
4BachelierandBlack-Scholes
4.1IntroductiontoContinuousTimeModels
4.2ModelsinContinuousTime
4.3BacheliersModel
4.4TheBlack-ScholesModel
5TheKreps-YanTheorem
5.1AGeneralFramework
5.2NoFreeLunch
6TheDalang-Morton-WillingerTheorem
6.1StatementoftheTheorem
6.2ThePredictableRange
6.3TheSelectionPrinciple
6.4TheClosednessoftheConeC
6.5ProofoftheDalang-Morton-WillingerTheoremforT=1
6.6AUtility-basedProofoftheDMWTheoremforT=1
6.7ProofoftheDalang-Morton-WillingerTheoremforT≥1byInductiononT
6.8ProofoftheClosednessofKintheCaseT≥1
6.9ProofoftheClosednessofCintheCaseT≥1underthe(NA)Condition
6.10ProofoftheDalang-Morton-WillingerTheoremforT≥1usingtheClosednessofC
6.11InterpretationoftheL-BoundintheDMWTheorem...
7APrimerinStochasticIntegration
7.1TheSet-up
7.2IntroductoryonStochasticProcesses
7.3Strategies,Semi-martingalesandStochasticIntegration
8ArbitrageTheoryinContinuousTime:anOverview
8.1NotationandPreliminaries
8.2TheCrucialLemma
8.3Sigma-martingalesandtheNon-locallyBoundedCase

PartIITheOriginalPapers
9AGeneralVersionoftheFundamentalTheoremofAssetPricing(1994)
9.1Introduction
9.2DefinitionsandPreliminaryResults
9.3NoFreeLunchwithVanishingRisk
9.4ProofoftheMainTheorem
9.5TheSetofRepresentingMeasures
9.6NoFreeLunchwithBoundedRisk
9.7SimpleIntegrands
9.8Appendix:SomeMeasureTheoreticalLemmas
10ASimpleCounter-ExampletoSeveralProblemsintheTheoryofAssetPricing(1998)
10.1IntroductionandK~iownResults.
10.2ConstructionoftheExample
10.3IncompleteMarkets
11TheNo-ArbitragePropertyunderaChangeofNumeraire(1995)
11.1Introduction
11.2BasicTheorems
11.3DualityRelation
11.4HedgingandChangeofNumraire
12TheExistenceofAbsolutelyContinuousLocalMartingaleMeasures(1995)
12.1Introduction
12.2ThePredictableRadon-NikodymDerivative
12.3TheNo-ArbitragePropertyandImmediateArbitrage.,
12.4TheExistenceofanAbsolutelyContinuous
LocalMartingaleMeasure
13TheBanachSpaceofWorkableContingentClaimsinArbitrageTheory(1997)
13.1Introduction
13.2MaximalAdmissibleContingentClaims
13.3TheBanachSpaceGeneratedbyMaximalContingentClaims
13.4SomeResultsontheTopologyof
13.5TheValueofMaximalAdmissibleContingentClaimsontheSetMe
13.6TheSpacesunderaNumdraireChange
13.7TheClosureofsandRelatedProblems
14TheFundamentalTheoremofAssetPricingforUnboundedStochasticProcesses(1998)
14.1Introduction
14.2Sigma-martingales
14.3One-periodProcesses
14.4TheGeneralRd-valuedCase
14.5DualityResultsandMaximalElements
15ACompactnessPrincipleforBoundedSequencesofMartingaleswithApplications(1999)
15.1Introduction
15.2NotationsandPreliminaries
15.3AnExample
15.4ASubstituteofCompactnessforBoundedSubsetsofH1
15.4.1ProofofTheorem15.A
15.4.2ProofofTheorem15.C
15.4.3ProofofTheorem15.B
15.4.4AproofofM.YorsTheorem..
15.4.5ProofofTheorem15.D
15.5Application
PartIIIBibliography
References
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP