MATLAB数据分析与挖掘实战
正版新书 新华官方库房直发 可开电子发票
¥
44.16
6.4折
¥
69
全新
仅1件
作者张良均 等 著
出版社机械工业出版社
ISBN9787111504351
出版时间2015-06
版次1
装帧平装
开本16开
纸张胶版纸
页数329页
定价69元
货号SC:9787111504351
上书时间2024-12-14
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
作者简介:
张良均,资深大数据挖掘专家和模式识别专家,有10多年的大数据挖掘应用、咨询经验,10余年数据仓库系统管理与实施经验,超过10年的系统开发与设计经验。为电信、电力、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。此外,他精通Java EE企业级应用开发,是广东工业大学和华南师范大学兼职教授,著有《神经网络实用教程》、《数据挖掘:实用案例分析》等畅销书。
精彩内容:
Preface?前 言为什么要写这本书LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,在目前最炙手可热的25项技能中,数据挖掘人才需求排名第一。那么数据挖掘是什么?数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,以及提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。
但和国外相比,我国由于信息化程度不太高,企业内部信息不完整,所以零售业、银行、保险、证券等行业对数据挖掘的应用并不太理想。但随着市场竞争的加剧,各行业对数据挖掘技术的意愿越来越强烈,可以预计,未来几年,各行业的数据分析应用一定会从传统的统计分析发展到大规模的数据挖掘应用。在大数据时代,数据过剩、人才短缺,数据挖掘专业人才的培养又需要专业知识和职业经验的积累。所以,本书注重数据挖掘理论与项目案例实践相结合,可以让读者获得真实的数据挖掘学习与实践环境,更快、更好地学习数据挖掘知识与积累职业经验。
总的来说,随着云时代的来临,大数据技术将具有越来越重要的战略意义。大数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产要素,人们对于海量数据的运用预示着新一轮生产率增长和消费者激增浪潮的到来。大数据分析技术将帮助企业用户在合理的时间内攫取、管理、处理、整理海量数据,也为企业经营决策提供积极的帮助;大数据分析作为数据存储和挖掘分析的前沿技术,广泛应用于物联网、云计算、移动互联网等战略性的新兴产业。虽然大数据目前在国内还处于初级阶段,但是其商业价值已经显现出来,特别是有实践经验的大数据分析人才更是各企业争夺的热门。为了满足日益增长的大数据分析人才的需求,很多大学开始尝试
...
内容简介:
本书共16章,共三篇。基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具MATALB进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。提高篇(第16章),介绍了基于MATLAB二次开发的数据挖掘应用软件——TipDM数据挖掘建模工具,并以此工具为例详细介绍了基于MATLAB接口完成数据挖掘二次开发的各个步骤,使读者体验到通过MATLAB实现数据挖掘二次开发的强大魅力。
目录:
前言
基础篇
第1章数据挖掘基础
1.1某知名连锁餐饮企业的困惑
1.2从餐饮服务到数据挖掘
1.3数据挖掘的基本任务
1.4数据挖掘的建模过程
1.4.1定义挖掘目标
1.4.2数据取样
1.4.3数据探索
1.4.4数据预处理
1.4.5挖掘建模
1.4.6模型评价
1.5常用的数据挖掘建模工具
1.6小结
第2章MATLAB数据分析工具箱简介
2.1MATLAB的安装
2.2MATLAB使用入门
2.2.1MATLAB R2014a操作界面
2.2.2MATLAB常用操作
2.3MATLAB数据分析工具箱
2.4配套附件使用设置
2.5小结
第3章数据探索
3.1数据质量分析
3.1.1缺失值分析
3.1.2异常值分析
3.1.3一致性分析
3.2数据特征分析
3.2.1分布分析
3.2.2对比分析
3.2.3统计量分析
3.2.4周期性分析
3.2.5贡献度分析
3.2.6相关性分析
3.3MATLAB主要数据的探索函数
3.3.1统计特征函数
3.3.2统计作图函数
3.4小结
第4章数据预处理
4.1数据清洗
4.1.1缺失值处理
4.1.2异常值处理
4.2数据集成
4.2.1实体识别
4.2.2冗余属性识别
4.3数据变换
4.3.1简单的函数变换
4.3.2规范化
4.3.3连续属性离散化
4.3.4属性构造
4.3.5小波变换
4.4数据规约...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价