统计挖掘与机器学习 大数据预测建模和分析技术(原书第3版)
正版新书 新华官方库房直发 可开电子发票
¥
93.87
6.3折
¥
149
全新
库存4件
作者(美)布鲁斯·拉特纳
出版社机械工业出版社
ISBN9787111689942
出版时间2021-09
版次1
装帧平装
开本16开
纸张胶版纸
页数548页
定价149元
货号SC:9787111689942
上书时间2024-12-03
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
主编推荐:
本书创造性地汇编了数据挖掘技术,将统计数据挖掘和机器学习数据挖掘进行了区分,对经典和现代统计方法框架进行了扩展,以用于预测建模和大数据分析。本书为数据挖掘领域新晋的数据科学家所面临的共同问题提供了适当的解决方案,并侧重于数据科学家的需求,提供了实用且强大、简单而富有洞察力的量化技术,其中大部分使用了受新机器学习影响改进的“旧”统计方法。
在这本畅销书的新版里,作者大幅修改并重新组织章节内容,新增了一些富有创意且用途广泛的机器学习数据挖掘技术方面的内容。简单而有针对性的量化处理方法使得本书在数据挖掘图书领域别具一格。
内容简介:
本书创造性地汇编了数据挖掘技术,将统计数据挖掘和机器学习数据挖掘进行了区分,对经典和现代统计方法框架进行了扩展,以用于预测建模和大数据分析。本书在第2版的基础上新增了13章,内容涵盖数据科学发展历程、市场份额估算、无抽样调研数据预测钱包份额、潜在市场细分、利用缺失数据构建统计回归模型、十分位分析评估数据的预测能力,以及一个无须精通自然语言处理就能使用的文本挖掘工具。本书适合数据挖掘从业者以及对机器学习数据挖掘感兴趣的人阅读。
目录:
第3版前言
第2版前言
致谢
关于作者
第1章 引论 1
1.1 个人计算机与统计学 1
1.2 统计学和数据分析 2
1.3 EDA简介 3
1.4 EDA范式 4
1.5 EDA的弱点 5
1.6 小数据和大数据 5
1.6.1 数据规模特征 6
1.6.2 数据规模:个人观点 7
1.7 数据挖掘范式 7
1.8 统计学和机器学习 8
1.9 统计数据挖掘 9
参考资料 9
第2章 数据处理相关学科:统计学和数据科学 11
2.1 引言 11
2.2 背景 11
2.3 统计学与数据科学的比较 12
2.4 讨论:统计学与数据科学的不同之处 18
2.5 本章小结 19
2.6 结语 19
参考资料 19
第3章 变量评估的两种基本数据挖掘方法 21
3.1 引言 21
3.2 相关系数 21
3.3 散点图 22
3.4 数据挖掘 24
3.4.1 示例3.1 24
3.4.2 示例3.2 24
3.5 平滑散点图 25
3.6 一般关联性检验 27
3.7 本章小结 28
参考资料 29
第4章 用于评估成对变量的基于CHAID的数据挖掘方法 30
4.1 引言 30
4.2 散点图 30
4.3 平滑散点图 31
4.4 CHAID入门 32
4.5 用更平滑的散点图进行基于CH
...
— 没有更多了 —
以下为对购买帮助不大的评价