目录 Historical Development o] Classical Physico-Mathematics 1. Preliminary 2. Introduction 3. Introduction of Precedengs of Fouriers work by Poisson 3.1 Arguments on periodicity among Euler, dAlembert and D. Bernoulli 3.2 The solution of heat communication in the Prdvosts essay 3.3 Fouriers communication theory as the first academic theme of his works 3.4 Fouriers singularity of passage 3.5 The trigonometric series by Lagrange and Fourier 3.6 Recherches sur la Nature et la Propagation du Son by Lagrange [62 3.7 Solution de diffdrents probl~mes de calcul integral. Des vibrations dune corde tendue et ehang~e dun nombre quelconque de poids by LagraJage [66 1762-65 3.8 Poissons paradigm of universal truth 4. Poissons integral theories and preceding works 4.1 The definite integral of an example by Euler 4.2 The Lacroixs introduction of definite integral by Euler 4.3 M~moire sur les Equations aux Differences m~ldes, by Poisson [97 4.4 Mdmoire sur divers paints danalyse, by Laplace [74 4.5 Mdmoire sur les int~grales d~finies, by Poisson [100 4.6 Mdmoire sur les intdgrales ddfinies, by Poisson [101 4.7 Suite du Mdmoire sur les intdgrales ddfinies et sur la sommation des s~ries by Poisson [112 4.7.1 Expression des Fonctions par des Sdries de Quantit~s p~riodiques 5. Argument between Fourier and Poisson on applying the theorem of De Gua to transcendental equations 6. Fouriers principles on the trigonometric series, the integral and the root 6.1 Theorie analytique de la chaleur. (Deux~me Edition) [36 7. Poissons heat theory in rivalry to Fourier 7.1 Mdmoire sur la Distribution de la Chaleur dans les Corps solides [108 7.1.1 2, Distribution de la Chaleur dans une Barre prismatique, dune petite dpaisseur 7.1.2 3, Distribution de la Chaleur dans un Anneau homog~ne et dun dpaisseur constante 7.1.3 5, iquations diffdrentielles du Mouvement de la Chaleur dans un corps solide de forme quelconque 7.2 Second Mdmoire sur la Distribution de la Chaleur dans les Corps solides [1111, lS 8. The physical structure and mathematical descriptions in the contrarieties of the microscopically descriptive functions on the Navier-Stokes equation from the viewpoint of mathematical history 8.1 Introduction 8.2 Separate integration of the elastic fluid equations before MD 8.3 The symbol S instead of the integral f 8.4 MD equations of elastic solid and fluid by sum instead of integral 8.5 Attraction in Capillary action 8.6 Capillary action with ordinary description 8.7 Gauss three basic forces and two kernel functions : f derived from ~0 and F derived from (I) 8.8 The circular argument asserting consistency between physical theory and
以下为对购买帮助不大的评价