• Python实战速成手册 数据分析+机器学习+深度学习9787115574497
  • Python实战速成手册 数据分析+机器学习+深度学习9787115574497
  • Python实战速成手册 数据分析+机器学习+深度学习9787115574497
21年品牌 40万+商家 超1.5亿件商品

Python实战速成手册 数据分析+机器学习+深度学习9787115574497

正版图书,可开发票,请放心购买。

42.22 6.0折 69.8 全新

库存21件

广东广州
认证卖家担保交易快速发货售后保障

作者方勇

出版社人民邮电出版社

ISBN9787115574497

出版时间2021-09

装帧平装

开本16开

定价69.8元

货号11443789

上书时间2024-12-24

哲仁书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
方勇,16年软件研发与教育经验,在多家软件公司任职技术与管理职位,曾担任联想公司技术顾问、华为特聘讲师。擅长领域有人工智能、企业级应用系统研发,大型系统架构设计,金融、通信商业系统建模,具有丰富的大型项目的研发与管理经验。有5年的Python培训经验,曾获2018年华为“很好交付标兵”奖。

目录
第 1章
 统计学基础 1
1.1 数据分布 2
1.2 离中趋势 4
1.3 抽样理论 6
1.4 基本统计概念 9

第 2章
 Python基础 15
2.1 Python介绍 16
2.2 第 一个Python程序 16
2.3 安装Anaconda 17
2.4 Python规范 23
2.5 Python的数据类型 24
2.6 Python语句 29
2.7 Python函数 33
2.8 Python中的模块和包 36
2.9 Python时间模块 37
2.10 Python文件操作 44

第3章
 综合练习:迷你DVD管理器 51
3.1 项目需求 52
3.2 开发步骤 52

第4章
 Python面向对象入门 59
4.1 定义Python类 60
4.2 继承的原理 61
4.3 Python构造函数 62
4.4 实例 63
4.5 小结 65

第5章
 综合练习:迷你DVD
 管理器(OOP版) 67

第6章
 在Python中操作 MySQL 73
6.1 安装PyMySQL 74
6.2 pymysql.connect()中的参数说明 74
6.3 connection对象支持的方法 74
6.4 cursor对象支持的方法 75
6.5 实现pymysql的增删改查功能 75

第7章
 NumPy 79
7.1 NumPy介绍 80
7.2 NumPy数组 80
7.3 numpy.zeros()和numpy.ones()     82
7.4 numpy.reshape()和numpy.flatten() 83
7.5 numpy.hstack()和numpy.vstack()   84
7.6 numpy.asarray() 85
7.7 numpy.arange() 86
7.8 numpy.linspace()和numpy.
   logspace() 87
7.9 索引和切片NumPy数组 88
7.10 NumPy统计函数与示例  89
7.11 numpy.dot()  90
7.12 numpy.matmul() 90
7.13 numpy.linalg.det() 91
7.14 NumPy实例 91

第8章
 pandas 95
8.1 pandas介绍 96
8.2 pandas的数据结构 96
8.3 创建数据帧 97
8.4 创建日期范围 98
8.5 查看数据 98
8.6 拆分数据 99
8.7 读取并写入数据 103
8.8 pandas实例 105

第9章
 Matplotlib 109
9.1 安装Matplotlib并查看版本 110
9.2 绘制折线图 110
9.3 绘制柱状图 113

第 10章
 人工智能 121
10.1 人工智能领域 122
10.2 机器学习 122
10.3 监督学习和无监督学习 127
10.4 2020年19个最佳AI聊天
   机器人 129

第 11章
 Scikit-Learn 135
11.1 Scikit-Learn介绍 136
11.2 数据集 136
11.3 Scikit-Learn实例 139
11.4 模型选择和评估 162

第 12章
 实战案例 169
12.1 泰坦尼克号(完整过程分析) 170
12.2 电信单用户转合约预测 189
12.3 电信低速率小区预测 193
12.4 预测客户是否会认购定期存款 196
12.5 银行信用卡欺诈检测 205

第 13章
 神经网络 211
13.1 深度学习 212
13.2 前馈神经网络 214
13.3 FNN实例——低速率小区 215
13.4 递归神经网络 220
13.5 RNN实例——低速率小区 226
13.6 卷积神经网络 227
13.7 CNN实例——低速率小区 232

内容摘要
本书基于Python语言,较为全面地讲解了数据分析、机器学习、深度学习的相关知识,涵盖统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、NumPy、pandas、Matplotlib、Scikit-Learn,以及人工智能、神经网络等内容。本书还包括大量代码和综合练习,以及丰富的实战案例。本书适合对数据分析、机器学习与深度学习感兴趣的读者学习,也适合作为相关专业的培训参考,还适合从事人工智能相关工作的人员阅读。

主编推荐
1. 本书作者为华为大学特聘讲师,专注于数据分析、机器学习、深度学习方面,实战经验丰富,更能从实际需求出发,编写出适合读者的实用书。 2. 本书涉及数据分析、机器学习、深度学习的相关知识。 3. 本书含有详细的代码案例,帮助读者快速上手,进行项目开发。 4. 本书内容丰富,流程完整,案例丰富,实操性强。

精彩内容
本书基于Python语言,较为地讲解了数据分析、机器学习、深度学习的相关知识,涵盖统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、NumPy、pandas、Matplotlib、人工智能、Scikit-Learn及神经网络等内容。本书还包括大量代码和综合练习,以及丰富的实战案例。

媒体评论
1. 本书作者为华为大学特聘讲师,专注于数据分析、机器学习、深度学习方面,实战经验丰富,更能从实际需求出发,编写出适合读者的实用书。 2. 本书涉及数据分析、机器学习、深度学习的相关知识。 3. 本书含有详细的代码案例,帮助读者快速上手,进行项目开发。 4. 本书内容丰富,流程完整,案例丰富,实操性强。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP