Scikit-Learn、Keras和TensorFlow的机器学习实用指南第2版(影印版)
¥
30
1.6折
¥
186
九品
仅1件
作者Aurélien Géron 著
出版社东南大学出版社
出版时间2020-05
装帧其他
上书时间2023-08-09
商品详情
- 品相描述:九品
-
上册
图书标准信息
-
作者
Aurélien Géron 著
-
出版社
东南大学出版社
-
出版时间
2020-05
-
版次
1
-
ISBN
9787564188306
-
定价
186.00元
-
装帧
其他
-
开本
16开
-
页数
819页
-
字数
1057千字
- 【内容简介】
-
通过Scikit-Learn和pandas的端到端项目学习机器学习基础知识
使用TensorFlow 2构建和训练若干神经网络架构,解决分类和回归问题
探索对象检测、语义分割、注意力机制、语言模型,生成对抗网络(GAN)等
探索Keras API,TensorFlow 2的官方高级API
使用TensorFlow的数据API、分布式策略API、TF Transform和TF-Serving来部署用于生产的TensorFlow模型
在Google Cloud 人工智能平台或移动设备上进行部署
探索无监督学习技术,如降维、聚类和异常检测
通过强化学习创建自主学习代理,包括使用TF-Agents库
- 【作者简介】
-
Aurélien Géron,是一名机器学习咨询顾问和培训师。作为一名前Google职员,在2013至2016年间,他领导了YouTube视频分类团队。在2002至2012年间,他身为法国主要的无线ISP Wifirst的创始人和CTO,在2001年他还是Polyconseil的创始人和CTO,这家公司现在管理着电动汽车共享服务Autolib'。
- 【目录】
-
preface
part i.the fundamentals of machine learning
1.the machine learning landscape
what is machine learning?
why use machine learning?
examples of applications
types of machine learning systems
supervised/unsupervised learning
batch and online learning
instance-based versus model-based learning
main challenges of machine learning
insufficient quantity of training data
nonrepresentative training data
poor- quality data
irrelevant features
overfitting the training data
underfitting the training data
stepping back
testing and validating
hyperparameter tuning and model selection
data mismatch
exercises
2.end-to-end machine learning project
working with real data
look at the big picture
frame the problem
select a performance measure
check the assumptions
get the data
create the workspace
download the data
take a quick look at the data structure
create a test set
discover and visualize the data to gain insights
visualizing geographical data
looking for correlations
experimenting with attribute binations
prepare the data for machine learning algorithms
data cleaning
handling text and categorical attributes
custom transformers
feature scaling
transformation pipelines
select and train a model
training and evaluating on the training set
better evaluation using cross-validation
fine-tune your model
grid search
randomized search
ensemble methods
analyze the best models and their errors
evaluate your system on the test set
launch, monitor, and maintain your system
try it out!
exercises
3.classification
mnist
training a binary classifier
performance measures
measuring accuracy using cross-validation
confusion matrix
precision and recall
precision/recall trade-off
the roc curve
multiclass classification
……
part ii.neural works and deep learning
a.exercise solutions
b.machine learning project checklist
c.svm dual problem
d.autodiff
e.other popular ann architectures
f.spe data structures
g.tensorfiow graphs
index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价