• Python快乐编程——数据分析与实战
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

Python快乐编程——数据分析与实战

正版二手,均有笔记不影响使用,无赠品、光盘、MP3等。如需购买套装书,请联系客服核实,批量上传数据有误差,默认一本,套装书售后运费自理,还请见谅!

48 6.9折 69.9 八五品

库存31件

山东枣庄
认证卖家担保交易快速发货售后保障

作者千锋教育高教产品研发部

出版社清华大学出版社

出版时间2021-04

版次1

装帧其他

货号9787302563785

上书时间2024-11-06

必过书城

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 千锋教育高教产品研发部
  • 出版社 清华大学出版社
  • 出版时间 2021-04
  • 版次 1
  • ISBN 9787302563785
  • 定价 69.90元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 303页
  • 字数 0.47千字
【内容简介】
本书从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。本书以数据挖掘建模工具Python语言来展开,先介绍案例背景提出挖掘目标,再阐述分析方法与过程,*后完成模型构建,在介绍建模过程中穿插操作训练,把相关的知识点嵌入相应的操作过程中,使读者轻松理解并掌握相关的理论和知识点。本书适用于对数据分析有浓厚兴趣但不知从何下手的初学者,也可以作为本科生、研究生以及科研人员学习Python的基础教材。
【作者简介】
胡耀文,2014年--2016年连续三年获得微软全球MVP最有价值专家,清华大学出版社技术编审委员会委员,2009年参与国庆60周年官兵电子纪念册项目,CSDN著名技术专家,博客浏览量超过1460350次,2012年7月 出版Windows CE 7开发实战详解,2013年5月出版Windows8开发权威指南。              
【目录】
第1章数据分析概述

1.1初步认识数据分析

1.2数据分析的基本流程

1.3Python数据分析的工具

1.4Jupyter Notebook的基本使用

1.4.1下载与安装

1.4.2功能界面

1.4.3工作原理

1.4.4基本使用

1.4.5高级操作

小结

习题

第2章IPython的使用

2.1IPython基础

2.1.1IPython简介

2.1.2IPython使用技巧

2.1.3IPython魔术命令

2.2IPython中的开发工具

2.2.1调试器

2.2.2性能分析

小结

习题

第3章NumPy的使用

3.1数组的使用

3.1.1数组的创建

3.1.2数组的属性

3.1.3数组的运算

3.1.4数组的索引

3.1.5数组的变换

3.2矩阵的使用

3.2.1矩阵的创建

3.2.2矩阵的合并

3.2.3矩阵的运算

3.2.4矩阵的属性

3.3NumPy实用技巧

3.3.1通用函数的使用

3.3.2数据的保存和读取

3.3.3随机数生成

3.3.4NumPy与数据统计

小结

习题

 

 

 

第4章Pandas的使用

4.1Pandas的数据结构

4.1.1Series对象的创建

4.1.2Series对象的属性

4.1.3DataFrame对象的创建

4.1.4DataFrame对象的属性

4.2Pandas的索引对象

4.2.1Series 索引的基本使用

4.2.2重建索引

4.2.3索引的基本选取和过滤

4.3Pandas的基本计算

4.3.1算术运算和数据对齐

4.3.2自定义函数

4.3.3排序

4.3.4重复索引的基本使用

4.4Pandas的统计功能

4.4.1统计使用的基本函数

4.4.2常用统计方法

4.5Pandas的数据缺陷处理

4.5.1dropna处理Series数据缺陷

4.5.2dropna处理DataFrame数据缺陷

4.5.3fill进行数据添加

4.6Pandas的层次化索引

4.6.1基本创建

4.6.2重排分级

4.6.3根据级别进行汇报

4.6.4DataFrame数据列的使用

4.7Pandas的文件读取

4.7.1读取/存储Excel文件

4.7.2读取/存储CSV文件

4.7.3读写数据库

4.7.4读取HDF5文件

小结

习题

 

第5章Matplotlib的使用

5.1Matplotlib绘图流程

5.2Matplotlib基本使用

5.2.1创建画布

5.2.2添加子图

5.2.3规定刻度与标签

5.2.4添加图例

5.2.5显示

5.3Matplotlib常用技巧

5.3.1配置文件

5.3.2rc参数的基本配置

5.3.3中文显示配置

5.4Matplotlib基本图形

5.4.1Matplotlib绘制散点图

5.4.2Matplotlib绘制直方图

5.4.3Matplotlib绘制饼状图

5.4.4Matplotlib绘制折线图

5.4.5Matplotlib绘制箱型图

小结

习题

第6章时间序列分析

6.1时间对象——Timestamp

6.1.1创建时间戳

6.1.2指定与转换时区

6.1.3最小时间/最大时间

6.1.4常用属性

6.2时间对象——Period

6.2.1Period对象的创建

6.2.2Period对象的属性

6.2.3Period对象的方法

6.3时间对象——Timedelta

6.3.1Timedelta对象的创建

6.3.2Timedelta对象的属性

6.3.3Timedelta对象的方法

6.3.4时间间隔的基本运算

6.4DateTimeIndex对象

6.4.1DateTimeIndex对象的创建

6.4.2DateTimeIndex对象的属性

6.4.3DateTimeIndex对象的方法

6.5PeriodIndex对象

6.5.1PeriodIndex对象的创建

6.5.2PeriodIndex对象的属性

6.5.3PeriodIndex对象的方法

6.6TimedeltaIndex对象

6.6.1TimedeltaIndex对象的创建

6.6.2TimedeltaIndex对象的属性

6.6.3TimedeltaIndex对象的方法

6.7采样

6.7.1采样的基本方法

6.7.2降采样

6.7.3升采样

小结

习题

 

第7章数据处理的基本手段

7.1合并数据集

7.1.1主键合并数据

7.1.2轴向数据合并

7.1.3重叠数据的合并

7.1.4索引键的合并

7.2数据清洗

7.2.1重复值的处理

7.2.2异常值的处理

7.2.3缺失值的处理

7.3数据标准化

7.3.1最小最大标准化

7.3.2Zscore标准化

7.3.3按小数定标标准化

7.4数据类型的转换

7.4.1离散化连续数据

7.4.2哑变量处理类型数据

小结

习题

第8章基于文本的自然语言分析

8.1基于文本的自然语言处理概述

8.2Jieba基本介绍和使用

8.2.1基本介绍

8.2.2安装

8.2.3基本使用

8.3NLTK的基本介绍和使用

8.3.1NLTK的基本介绍

8.3.2NLTK的安装

8.3.3NLTK基本使用

8.4文本相似度

8.4.1相似度分析

8.4.2基于NLTK的文本相似度分析

8.4.3基于Gensim的文本相似度分析

8.5情感分析

8.5.1情感分析概述

8.5.2基于朴素贝叶斯的分析

8.5.3基于情感词典的分析

8.6文本分类

小结

习题

第9章ScikitLearn数据建模

9.1数据建模的基本概述

9.1.1ScikitLearn的基本介绍

9.1.2数据建模的基本流程

9.2回归模型的应用与评价

9.2.1回归模型的应用

9.2.2回归模型的评价

9.2.3回归模型的可视化

9.3聚类模型的应用与评价

9.3.1聚类模型的创建

9.3.2聚类模型的评价

9.3.3聚类模型可视化

9.4分类模型的应用与评价

9.4.1创建分类模型

9.4.2分类模型的评价

小结

习题

 

第10章数据可视化进阶

10.1Seaborn

10.1.1安装

10.1.2可视化数据集

10.1.3分类数据集

10.2Bokeh

10.2.1安装

10.2.2柱状图

10.2.3散点图

10.2.4折线图

10.2.5时间轴

10.3Pyecharts

10.3.1安装

10.3.2基本配置

10.3.3仪表图绘制

10.3.4关系图

10.3.5平行坐标系

10.3.6饼状图

10.3.7词云图

10.3.8地理地图

10.4空间可视化

10.4.1空间散点图

10.4.2空间柱状体

小结

习题

第11章数据分析案例——就业分析

11.1项目案例分析

11.2数据获取

11.3数据处理

11.3.1数据类型的转换

11.3.2去除重复值

11.3.3缺失值处理

11.4数据分析

小结
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP