煤矸界面的自动识别技术
全新正版 假一赔十 可开发票
¥
49.16
7.2折
¥
68
全新
仅1件
作者王保平,王永娟
出版社化学工业出版社
ISBN9787122417176
出版时间2024-01
装帧平装
开本32开
定价68元
货号1203153162
上书时间2025-01-05
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
无
目录
第1章煤矸界面的自动识别技术研究概述
1.1研究背景与意义
1.2国内外煤矸界面识别研究现状
1.2.1国外煤矸界面识别研究现状
1.2.2国内煤矸界面识别研究现状
1.2.3目前煤矸界面识别存在的问题
1.3本书研究方法和主要内容
第2章尾梁振动分析及实验系统
2.1尾梁的振动分析
2.1.1尾梁的自由振动
2.1.2尾梁的受迫振动
2.2信号的拾取
2.2.1传感器的选用原则
2.2.2振动信号传感器
2.2.3声波信号传感器
2.3实验系统概述及传感器安装
2.4煤矸界面自动识别原理
2.5现场综放工作面
第3章基于局域波分解的振动信号特征提取与识别
3.1Hilbert变换
3.1.1连续信号的Hilbert变换
3.1.2离散时间信号的Hilbert变换
3.2瞬时频率和固有模态函数
3.3局域波分解过程
3.3.1均值求法
3.3.2分量提取
3.4基于局域波分解的尾梁振动信号分析
3.4.1尾梁振动信号的局域波分解
3.4.2基于局域波分解的煤矸界面特征提取方法
3.4.3振动信号的Hilbert谱和边际谱分析
3.4.4振动信号的距离判别方法
第4章声波信号的时间序列建模与分析
4.1时间序列基本原理
4.2时间序列模型类型
4.2.1AR自回归模型
4.2.2MA滑动平均模型
4.2.3ARMA自回归滑动平均模型
4.2.4ARIMA自回归综合滑动平均模型
4.3煤矸声波信号的时序建模
4.3.1数据预处理
4.3.2判定模型类型
4.3.3模型参数估计
4.3.4模型阶数
4.3.5模型验证
4.4基于ARMA模型的双谱分析及其特征
4.5基于ARMA模型残差方差的煤矸界面特征
第5章BP神经网络在煤矸界面识别中的应用
5.1神经元模型和学习方式
5.1.1人工神经元模型
5.1.2学习方式及算法
5.2振动信号的BP神经网络识别
5.2.1BP神经网络的设计
5.2.2振动信号的识别
5.3声波信号的BP神经网络识别
5.4基于信息融合的识别方法
附录1emd分量峰值程序
附录2边际谱分析程序
附录3峰值函数程序
附录4时域波形及其傅里叶分析程序
附录5以emd分量峭度为特征进行预测程序
附录6以emd能量为特征进行预测程序
参考文献
内容摘要
《煤矸界面的自动识别技术》分为5章,主要内容包括:煤矸界面的自动识别技术研究概述、尾梁振动分析及实验系统、基于局域波分解的振动信号特征提取与识别、声波信号的时间序列建模与分析、BP神经网络在煤矸界面识别中的应用。本书建立了尾梁振动模型,提出了尾梁的振动行为具有统计规律,为后续的模式特征的提取及识别提供理论依据。然后针对尾梁振动信号,采用局域波方法处理信号,提取了反映煤矸界面的特征;针对声波信号,采用时间序列分析方法进行建模并提取特征。最后,利用多种识别方法对信号进行识别,并对提高识别精度做了研究。本书适用于从事煤矿机械、工业自动化领域工作的工程技术人员学习,也可以作为大中专院校相关专业的教学参考书。
主编推荐
本书建立了尾梁振动模型,提出了尾梁的振动行为具有统计规律,为后续的模式特征的提取及识别提供理论依据。然后针对尾梁振动信号,采用局域波方法处理信号,提取了反映煤矸界面的特征;针对声波信号,采用时间序列分析方法进行建模并提取特征。利用多种识别方法对信号进行识别,并对提高识别精度做了研究。
本书适用于从事煤矿机械、工业自动化领域工作的工程技术人员学习,也可以作为大中专院校相关专业的教学参考书。
— 没有更多了 —
以下为对购买帮助不大的评价