• 工程塑性理论及其在金属成形中的应用(英文版)
21年品牌 40万+商家 超1.5亿件商品

工程塑性理论及其在金属成形中的应用(英文版)

全新正版 假一赔十 可开发票

101.97 7.3折 139 全新

库存4件

北京东城
认证卖家担保交易快速发货售后保障

作者王仲仁 胡卫龙 苑世剑 王小松 著

出版社3030-高等教育出版社

ISBN9787040505870

出版时间2018-12

装帧精装

开本16开

定价139元

货号1201767762

上书时间2024-12-28

轻阅书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
Preface
1 Fundamentals of Classical Plasticity
  1.1  Stress
    1.1.1  The Concept of Stress Components
    1.1.2  Description of the Stress State
      1.1.2.1  Stresses on an Arbitrary Inclined Plane
      1.1.2.2  Stress Components on an Oblique Plane
      1.1.2.3  Spe Stresses
      1.1.2.4  Common Stress States
    1.1.3  Stress Tensors and Deviatoric Stress Tensors
    1.1.4  Mohr Stress Circles
      1.1.4.1  Mohr Circles for a Two-DimensionaI Stress System
      1.1.4.2  Mohr Circles for a Three-Dimensional Stress System
    1.1.5  Equations of Force Equilibrium
  1.2  Strain
    1.2.1  Nominal Strain and True Strain
    1.2.2  Strain Components as Functions of Infinitesimal Displacements
    1.2.3  The Maximum Shear Strains and the Octahedral Strains
    1.2.4  Strain Rates and Strain Rate Tensors
    1.2.5  Incompressibility and Chief Deformation Types
  1.3  Yield Criteria
    1.3.1  The Concept of Yield Criterion
    1.3.2  Tresca Yield Criterion
    1.3.3  Mises Yield Criterion
    1.3.4  Twin Shear Stress Yield Criterion
    1.3.5  Yield Locus and Physical Concepts of Tresca, Mises, and Twin Shear Stress Yield Criteria
      1.3.5.1  Interpretation of Tresca Yield Criterion
      1.3.5.2  Interpretation of Twin Shear Stress Yield Criterion
      1.3.5.3  Interpretation of Mises Yield Criterion
  1.4  A General Yield Criterion
    1.4.1  Representation of GeneraI Yield Criterion
    1.4.2  Yield Surface and Physical Interpretation
    1.4.3  Simplified Yield Criterion
  1.5  Classical Theory about Plastic Stress-Strain Relation
    1.5.1  Early Perception of Plastic Stress Strain Relations
    1.5.2  Concept of the Gradient-Based Plasticity and Its Relation with Mises Yield Criterion
      1.5.2.1  Concept of the Plastic Potential
      1.5.2.2  Physical Interpretation of the Plastic Potential
      1.5.2.3  Physical Interpretation of Mises Yield Function (Plastic Potential)
  1.6  Effective Stress, Effective Strain, and Stress Type
    1.6.1  Effective Stress
    1.6.2  Effective Strain
    1.6.3  Stress Type
  References
2 Experimental Research on Material Mechanical Properties under Uniaxial Tension
  2.1  Stress-Strain Relationship of Strain-Strengthened Materials under Uniaxial Tensile Stress State
  2.2  The Stress-Strain Relationship of the Strain-Rate-Hardened Materials in Uniaxial Tensile Tests
  2.3  Stress-Strain Relationship in Uniaxial Tension during Coexistence of Strain Strengthening and Strain Rate Hardening
  2.4  Bauschinger Effect
  2.5  Tensile Tests for Automotive Deep-Drawing Steels and High-Strength Steels
    2.5.1  Test Material and Experiment Scheme
    2.5.2  True Stress-Strain Curves in Uniaxial Tension
    2.5.3  Mechanical Property Parameters of Sheets
      2.5.3.1  Strain-HardeningExponent n
      2.5.3.2  Lankford Parameter R
      2.5.3.3  Plane Anisotropic Exponent AR
      2.5.3.4  Yield-to-Tensile Ratio σs/σb
      2.5.3.5  Uniform Elongation δm
  2.6  Tensile Tests on Mg-Alloys
  2.7  Tension Tests on Ti-Alloys
    2.7.1  Mechanical Properties of Ti-3AI-2.SV Ti-Alloy Tubes at High Temperatures
      2.7.2 Strain Hardening of Ti-3A1-2.5  V Ti-Alloy in Deformation at High
 Temperatures
 References
3 Experimental Research on Mechanical Properties of Materials under Non-Uniaxial Loading Condition
  3.1  P-p Experimental Results of Thin-Walled Tubes
    3.1.1  Lode Experiment
    3.1.2  P-p Experiments on Thin-Walled Tubes Made of Superplastic Materials
      3.1.2.1  Experiment Materials and Specimens
      3.1.2.2  Loading Methods
      3.1.2.3  Experimental Results and Analysis
    3.1.3  Experiments on Tubes Subjected to Internal Pressure and Axial Compressive Forces
      3.1.3.1  Experimental Device
      3.1.3.2  Material Properties
      3.1.3.3  Experimental Results
4 Yield Criteria of Different Materials
5 Plastic Constitutive Relations of Materials
6 Description of Material Hardenability with Different Models
7 Sequential Correspondence Law between Stress and Strain Components and Its Application in Plastic Deformation Process
8 Stress and Strain Analysis and Experimental Research on Typical Axisymmetric Plane Stress-Forming Process
9 Shell and Tube Hydroforming
10 Bulk Forming
11 Sheet Forming
Index

内容摘要
本书是抢先发售由有工程应用背景的教授与专家共同撰写的关于工程塑性理论及其在金属成形中的应用的专著。全书突出基本概念与应用,涵盖了作者们多年的研究成果。章重点介绍了几种屈服准则,包括作者提出的广义屈服准则,明确了应力偏张量与塑性变形的本质联系;第2章列出航天、航空及汽车领域新近研发的众多材料的单向拉伸力学特性;第3章介绍了验证屈服准则与塑性应力应变关系的薄管和薄板实验;第4章介绍了各向异性材料的屈服特性和静水应力与应力状态类型对屈服的影响;第5章介绍了塑性应变增量梯度理论的一般性定理及等效强化状态塑性变形中出现的“软化”现象;第6章介绍了后续塑性变形的几种强化特性;第7章阐述了由Levy-Mises应力应变关系增量理论导出的应力应变顺序对应规律及其实验验证;第8章给出了管材拉拔、缩口、扩口及锥面胀管等工序应力应变分析统一解;第9章为液压成形;0章为体积成形;1章为板料成形。本书不仅为读者提供系统的理论基础,指明解决问题的定性思路,还给出很多定量计算的范例,展示其应力应变分析结果,从总体上看,也扩展了读者的视野。
    本书可供材料、力学及机械学科的大学教师、研究生以及科研院所和企业研发部门的研究人员阅读。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP