• 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
  • 分形应用中的数学基础与方法
21年品牌 40万+商家 超1.5亿件商品

分形应用中的数学基础与方法

图片与信息不符时,以图片为准,紫外线臭氧已消毒,内页干净,正版现货

10 3.6折 28 八五品

仅1件

河南郑州
认证卖家担保交易快速发货售后保障

作者薛秀谦 编;谢和平

出版社科学出版社

出版时间1997-03

版次1

装帧精装

上书时间2024-11-27

书筏小驿

四年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:八五品
实物拍摄,图片为准,自然磨损,二手图书,图片实拍,品相自定义,书页自然老旧,介意者慎拍
商品描述
①本店有实体店铺,所有上架的商品都是现货,卖过的商品会及时下架,图片都是实物拍摄,所见即所得!
②本店基本都是二手商品(新商品会另注明),基本都是一件或一套,有需要的不要错过,下次再碰上一样的不知道要等到什么时候。
③由于是二手商品,所以店主为了客户和自己的健康着想,每件商品只要能放进消毒柜的,都用消毒柜消毒保洁g过(先臭氧+中温消毒45分钟,再紫外线+中温消毒30分钟,然后再擦洗),让您买着放心,看着安心!
④包装:统一用图书专用的气泡膜防水袋包装,干净美观,防水防摔。
图书标准信息
  • 作者 薛秀谦 编;谢和平
  • 出版社 科学出版社
  • 出版时间 1997-03
  • 版次 1
  • ISBN 9787030057037
  • 定价 28.00元
  • 装帧 精装
  • 开本 其他
  • 纸张 胶版纸
  • 页数 210页
  • 字数 176千字
【内容简介】
分形理论是研究非线性问题的一间新学科。自从20世纪70年代,曼德尔布罗特首先提出分形以来,这门学科无论是在其数学基础还是在其它学科的应用方面都得到了迅速发展。本书详细介绍了分形应用中的数学基础和方法,主要内容有:集合与度量空间,分形空间,自相似分形与自仿射分形,勒贝格测度与豪斯道夫测度,分形维数与多重维数,分形的结构与迭代函数系,分形上的动力系统与居里叶集和曼德尔布罗特集,随机分形与分形集上的随机过程,分形插值法与分形逼近法,分形边界上的狄利克雷问题,最后介绍了分形空间上的力学问题。各章都附有一定数量的例子和练习。

  本书的编写注意了分形理论中数学基础的系统性和方法的实用性,可供从事于分形研究的科技人员使用,也可以作为高等院校的教学参考书。
【目录】
前言

绪论

第一章  集合、分形与空间

  第一节  集合与分形

  第二节  映射与函数

  第三节  空间与度量

  第四节  分形空间

  第五节  自相似分形与自仿射分形

  练习

第二章  测度与维数

  第一节  勒贝格测度

  第二节  豪斯道夫测度与维数

  第三节  分形维数与多重分形

  练习

第三章  分形的结构

  第一节  迭代函数

  第二节  分形动力系统

  第三节  居里叶集

  第四节  曼德尔布罗特集"

  练习

第四章  随机分形

  第一节  概率空间与稳定分布

  第二节  随机分形模型

  第三节  布朗运动

  第四节  分形集上的随机过程

  练习

第五章  分形数值方法

  第一节  多项式插值与样条插值

  第二节  分形插值函数与维数

  第三节  隐函数分形插值

  第四节  分形空间中的有限元法与逼近法

  练习

第六章  分形边界上的狄利克雷问锤

  第一节  索伯列大空间

  第二节  狄利克雷问题

  第三节  分形空间中的力学量的定义

参考文献
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

实物拍摄,图片为准,自然磨损,二手图书,图片实拍,品相自定义,书页自然老旧,介意者慎拍
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP