数学与猜想(第一卷):数学中的归纳和类比
【自然老旧(泛黄)】标题显示多册均为一本,无赠品附件,书籍册号以图片为准,如图发货(EM7ME4)
¥
8.8
3.4折
¥
26
八品
仅1件
作者[美]波利亚(Polya G.) 著;李心灿、王月爽、李志尧 译
出版社科学出版社
出版时间2001-07
版次1
装帧平装
货号1868550518328102913
上书时间2024-12-16
商品详情
- 品相描述:八品
- 商品描述
-
A-510118001-019-3-3
图书标准信息
-
作者
[美]波利亚(Polya G.) 著;李心灿、王月爽、李志尧 译
-
出版社
科学出版社
-
出版时间
2001-07
-
版次
1
-
ISBN
9787030091109
-
定价
26.00元
-
装帧
平装
-
开本
大32开
-
纸张
胶版纸
-
页数
311页
-
字数
261千字
-
正文语种
简体中文
-
原版书名
Mathematics and Plausible Reasoning, Volume 1: Induction and Analogy in Mathematics
- 【内容简介】
-
本书是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法——合情推理(即猜想)。本书通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
全书共分两卷,第一卷为数学中的归纳和类比,第二卷为合情推理模式,此册为第一卷,主要讲述数学中各种合情推理的实例。本书可供大学数学系师生、中学数学教师,数学研究人员及数学爱好者阅读。
- 【作者简介】
-
波利亚,数学家、教育家,曾任美国国家科学院、美国艺术与科学学院院士,匈牙利科学院荣誉院士,伦敦数学会、瑞士数学会、美国工业数学与应用数学学会荣誉会员,法国巴黎科学院通讯院士。出生于匈牙利布达佩斯,1942年移居美国。获布达佩斯EotvosLorand大学数学博士学位。著有《数学的发现》、《数学分析中的问题和定理》、《数学物理中的等周不等式》等。
- 【目录】
-
~第一卷
译者的话
序言
对读者的提示
第一章归纳方法
引言
1.经验和信念
2.启发性联想
3.支持性联想
4.归纳的态度
第一章的例题和注释,l~~14.[12.是与非.13.经验与行为.14.逻辑学家.数学家.物理学家和工程师.]
第二章一般化.特殊化.类比
1.一般化.特殊化.类比和归纳
2.一般化
3.特殊化
4.类比
5.一般化.特殊化和类比
6.由类比作出的发现
7.类比和归纳
第二章的例题和注释,1~~46,[第一部分,1~~20,第二部分,21~~46].[1.正确的推广.5.一个极端的特殊情形.7.起主导作用的特殊情形.10.有代表性的特殊情形.11.可类比的情形.18.伟大的类比.19.明确的类比.20.几位数学家的名句摘录.21.猜想E.44.对猜想的一个疑问和证明的第一步尝试.45.证明的第二步尝试.46.类比的危险.]
第三章立体几何中的归纳推理
1.多面体
2.支持猜想的第一批事实
3.支持猜想的更多事实
4.一次严格的检验
5.验证再验证
6.一种很不同的情形
7.类比
8.空间的分割
9.修改一下问题的提法
10.一般化.特殊化.类比
11.一个类似的问题
12.类似问题的一张表格
13.解决一大批问题有时比解决单独一个问题更容易
14.一个猜想
15.预言与证明
16.再来一次,使它更好
17.归纳法引向演绎法,特例引向一般证明
18.更多的猜想
第三章的例题和注释,l~~41.[21.归纳过程:思想的适应,语言的适应.31.笛卡儿对多面体的研究工作.36.立体补角,互补球面多边形.]
第四章数论中的归纳方法
1.边长为整数的直角三角形
2.平方和
3.关于四奇数平方和问题
4.考察一个例子
5,把观察结果列成表
6.有什么规则
7.关于归纳发现未知事物的性质
8.关于归纳证据的性质
第四章的例题和注释,1~~26.[1.符号表示法.26.归纳法的危险.]
第五章归纳法杂例
l.函数的展开式
2.近似式
3.极限
4.设法推翻它
5.设法证明它
6.归纳阶段的作用
第五章的例题和注释,1~~18.[15.解释观察到的规律性.16.把观察到的事实进行分类.18.差别是什么]
第六章更一般性的陈述
1.欧拉
2.欧拉的研究报告
3.从实践到抽象的一般观点
4.欧拉研究报告的概述
第六章的例题和注释,l~~25.[1.母函数.7.平面几何的一个组合问题.10.平方和.19.另一个递推公式.20.整数因子和的另一个奇特规律.24.欧拉怎样遗漏一个发现.25.欧拉定理关于σn的一种推广.]
第七章数学归纳法
1.归纳阶段
2.论证阶段
3.研究的飞跃
4.数学归纳法的技巧
第七章的例题和注释,l~~18.[12.多证可能反而更省事.14.权衡你的定理.15.展望.17.任何n个数都相等吗]
第八章极大和极小
1.模式
2.例子
3.相切的等高线模式
4.两个例子
5.局部变动的模式
6.算术平均与几何平均的定理及其初步推论
第八章的例题和注释,1~~63,[第一部分,1~~32,第二部分,33~~63].[1.平面几何中的最小和最大距离.2.空间几何中的最小和最大距离.3.平面上的等高线.4.空间中的等值面.11.穿过尊等高线的原则.22.局部变动原则.23.极值的存在性.24.局部变动模式的一个变形:无限过程.25.局部变动模式的另一个变形:有限过程.26.用图示比较.33.多边形和多面体.面积和周长.体积和表面.34.具有正方形底的正棱柱.35.正圆柱.36.一般的正棱柱.37.具有正方形底的正对顶棱锥.38.正对顶锥.39.一般的正对顶棱锥.43.几何应用于代数.45.代数应用于几何.51.具有正方形底的正棱锥.52.正圆锥.53.一般的正棱锥.55.开盖盒子.56.槽.57.片.62.邮政局问题.63.开普勒问题.]
第九章物理数学
1.光学解释
2.力学解释
3.反复解释
4.吉恩·伯努利关于捷线的发现
5.阿基米德关于积分法的发现
第九章的例题和注释,1~~38.[3.内接于已知三角形中具有最小周长的三角形.9.空间中四点交通中心.10.平面上四点交通中心.11.四点交通网.12.打开与拉直.13.弹子.14.地球物理勘查.23.多面体表面上的最短线.24.曲面上的最短线(测地线).26.折纸法的一个设计.27.掷骰子.28.洪水.29.不像井那么深.30.一种常用的极端情形.32.变分法.33.从截面平衡到立体平衡.38.阿基米德方法的回顾.]
第十章等周问题
1.笛卡儿的归纳理由
2.潜在的理由
3.物理原因
4.瑞利的归纳理由
5.导出结论
6.证明结论
7.非常密切的关系
8.等周定理的三种形式
9.应用与问题
第十章的例题和注释,1~~43,[第一部分,1~~15,第二部分,16~~43].[1.回顾.2.你能用不同的方法推出某些部分的结果吗3.比较详细地重新叙述.7.你能将此方法用于其他某些问题吗8.等周定理的更清晰的形式.16.杆和绳.21.两根杆和两条绳.25.立体几何中的泰都问题.27.平面区域的等分钱.34.封闭曲面的等分线.40.具有许多完美性的图形.41.一种类似的情形.42.正立体.43.归纳理由]
第十一章更多种类的合情推理
1.猜一猜
2.根据有关情形判定
3.根据一般情形判定
4.提出一个比较简单的猜想
5.背景
6.无穷尽的过程
7.常用的启发性假设
第十一章的例题和注释,1~~23.[16.一般情形.19.没有主意是最不好的.20.一些常用的启发性假设.21.乐观的报酬.23.数值计算与工程师.]
后纪
问题的解答
参考文献~
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价