物理学中的群论
【自然老旧(泛黄)】标题显示多册均为一本,无赠品附件,书籍册号以图片为准,如图发货(D3AZGK)
¥
17.6
4.2折
¥
42
八品
仅1件
作者马中骐
出版社科学出版社
出版时间2005-01
版次1
装帧平装
货号1867054569080590338
上书时间2024-12-12
商品详情
- 品相描述:八品
- 商品描述
-
A-510118001-001-2-1
图书标准信息
-
作者
马中骐
-
出版社
科学出版社
-
出版时间
2005-01
-
版次
1
-
ISBN
9787030059710
-
定价
42.00元
-
装帧
平装
-
开本
其他
-
纸张
胶版纸
-
页数
732页
-
字数
615千字
- 【内容简介】
-
本书为《中国科学院研究生教学丛书》之一。
本书是物理类研究生的群论教材。主要内容包括群的基本概念和线性表示理论、转动群、晶体的对称性、置换群、SU(N)群、SO(N)群、李群和李代群。内容详实。每章后均配有适量习题,便于读者切实掌握有关知识。
- 【目录】
-
第一章 线性代数复习
1.1 线性空间和矢量基
1.2 线性变换和线性算符
1.3 相似变换
1.4 本征矢量和矩阵对角化
1.5 矢量内积
1.6 几种重要的矩阵
1.7 矩阵的直接乘积
习题
第二章 群的基本概念
2.1 对称
2.2 群及其乘法表
2.3 群的各种子集
2.4 群的同态关系
2.5 正多面体的固有对称变换群
2.6 群的直接乘积和非固有点群
习题
第三章 群的线性表示理论
3.1 群的线性表示
3.2 标量函数的变换算符
3.3 等价表示和表示的幺正性
3.4 有限群的不等价不可约表示
3.5 有限群的特征标表
3.6 物理应用
3.7 克莱布施-戈登系数
3.8 投影算符和正则表示的约化
习题
第四章 三维转动群
4.1 三维空间转动变换
4.2 李群的基本概念
4.3 二维幺模幺正矩阵群
4.4 SU(2)群的不等价不可约表示
4.5 李氏定理
4.6 克莱布施-戈登系数
4.7 张量和旋量
4.8 不可约张量算符及其矩阵元
习题
第五章 晶体的对称性
5.1 晶体的对称变换群
5.2 晶格点群
5.3 晶系和布拉菲格子
5.4 空间群
5.5 空间群的线性表示
习题
第六章 置换群
6.1 置换群的一般性质
6.2 群代数的理想和幂等元
6.3 杨图杨表和杨算符
6.4 置换群的不可约表示
6.5 不可约表示的实正交形式
6.6 置换群不可约表示的外积
6.7 辫子群
习题
第七章 SU(N)群
7.1 SU(N)群的一般性质
7.2 SU(N)群的不可约表示
7.3 协变张量和逆变张量
7.4 SU(N)群不可约表示的具体形式
7.5 克莱布施-戈登系数
7.6 SU(3)对称性和强子波函数
7.7 SU(NM)群和SU(N十M)群
7.8 开西米尔算子
习题
第八章 SO(N)群
8.1 SO(N)群的一般性质
8.2 SO(N)群的张量表示
8.3 O(N)群的张量表示
8.4 Γ矩阵群
8.5 SO(N)群的旋量表示
8.6 S0(4)群和洛伦兹群
习题
第九章 李群和李代数
9.1 李代数和结构常数
9.2 半单李代数的正则形式
9.3 单纯李代数的分类
9.4 单纯李代数的线性表示
9.5 Aτ李代数和SU(τ十l)群
9.6 Bτ李代数和SO(2τ十1)群
9.7 Dτ李代数和SO(2τ)群
9.8 Cτ李代数和Sp(2τ)群
9.9 例外单纯李代数
习题
第十章 李代数理论的新发展
10.1 维喇索洛代数
10.2 非扭曲的卡茨-穆迪代数
10.3 非扭曲卡茨-穆迪代数的分类
10.4 非扭曲卡茨-穆迪代数最高权表示
10.5 扭曲的卡茨-穆迪代数
习题
参考文献
汉-英人名对照表
索引
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价