• 计算机视觉教程(微课版 第3版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

计算机视觉教程(微课版 第3版)

18.8 2.4折 79.8 八五品

仅1件

河南郑州
认证卖家担保交易快速发货售后保障

作者章毓晋

出版社人民邮电出版社

出版时间2021-01

版次3

装帧平装

上书时间2024-09-05

有时书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
商品描述
亲爱的书友您好:本店正版二手书均为85成新左右,会有少量划线、笔记、涂写等,不影响使用。辅导习题类书籍笔记较多,望悉知!如果有书多种封面随机发。
图书标准信息
  • 作者 章毓晋
  • 出版社 人民邮电出版社
  • 出版时间 2021-01
  • 版次 3
  • ISBN 9787115546197
  • 定价 79.80元
  • 装帧 平装
  • 开本 其他
  • 纸张 胶版纸
  • 页数 366页
  • 字数 665千字
【内容简介】
本书系统地介绍了计算机视觉的基本原理、典型方法和实用技术,内容包括绪论、图像采集、基元检测、显著性检测、目标分割、目标表达和描述、纹理分析、形状特性分析、立体视觉、三维景物恢复、运动分析、景物识别、广义匹配、时空行为理解、场景解释等。读者可从中了解计算机视觉的基本原理和典型技术,并能据此解决计算机视觉应用中的一些具体问题。本书提供了许多讲解例题,每章均有小结和参考、思考题和练习题(本书为部分思考题和练习题提供了解答)。
  本书可作为信息科学、计算机科学、计算机应用、信号与信息处理、通信与信息系统、电子与通信工程、模式识别与智能系统等学科大学本科或研究生的专业基础课教材,也可作为远程教育或继续教育中计算机应用、电子技术等专业的研究生相关课程教材,还可供涉及计算机视觉技术应用行业(如工业自动化、人机交互、办公自动化、视觉导航和机器人、安全监控、生物医学、遥感测绘、智能交通和军事公安等)的科技工作者自学及科研参考。
【作者简介】
章毓晋,1989年获比利时列日大学应用科学博士学位。1989年至1993年先后为荷兰德尔夫特大学博士后及研究人员。1993年到清华大学工作,1997年起被聘为教授,1998年起被聘为博士生导师,2014年起被聘为教学科研系列的“长聘教授”。已在国内外发表了500多篇图像工程研究论文,出版了40多本教材和专著。曾任第24届国际图像处理会议(ICIP?2017)等20多个国内外学术会议的程序委员会主席。现为中国图象图形学学会副理事长;国际光学工程协会(SPIE)会士(因在图像工程方面的成就)。
【目录】
1、 绪论 

 1.1 计算机视觉 1

 1.1.1 视觉概述 1

 1.1.2 计算机视觉的目标 2

 1.1.3 相关学科 2

 1.1.4 应用领域 4

 1.2 图像基础 4

 1.2.1 图像及类别 4

 1.2.2 图像表达和显示 6

 1.2.3 图像存储 7

 1.3 像素间联系 10

 1.3.1 像素邻域 10

 1.3.2 像素间距离 11

 1.4 本书内容提要 15

 1.4.1 计算机视觉系统及模块 15

 1.4.2 如何学习使用本书 16

 总结和复习 19

2、 图像采集 21

 2.1 采集装置 21

 2.2 采集模型 23

 2.2.1 几何成像模型 23

 2.2.2 亮度成像模型 28

 2.2.3 空间和幅度分辨率 31

 2.3 采集方式 32

 2.3.1 成像方式一览 32

 2.3.2 结构光法 33

 2.4 摄像机标定 34

 2.4.1 标定程序和步骤 34

 2.4.2 两级标定法 37

 总结和复习 40

3、 基元检测 42

 3.1 边缘检测 42

 3.1.1 检测原理 42

 3.1.2 一阶导数算子 43

 3.1.3 二阶导数算子 47

 3.1.4 边界闭合 51

 3.1.5 边界细化 51

 3.2 SUSAN算子 52

 3.2.1 USAN原理 53

 3.2.2 角点和边缘检测 53

 3.3 哈里斯兴趣点算子 56

 3.4 哈夫变换 58

 3.3.1 基本哈夫变换 58

 3.3.2 广义哈夫变换 61

 3.3.3 完整广义哈夫变换 63

 3.5 椭圆定位和检测 64

 3.6 位置直方图技术 66

 总结和复习 68

4、 显著性检测 71

 4.1 显著性概述 71

 4.2 基于对比度的检测 74

 4.2.1 对比度算法分类 74

 4.2.2 基于对比度幅值 74

 4.2.3 基于对比度分布 75

 4.2.4 基于最小方向对比度 77

 4.3 基于最稳定区域的检测 79

 4.3.1 区域显著性 79

 4.3.2 最稳定区域 80

 4.3.3 显著性计算 82

 4.3.4 显著性后处理 83

 4.4 显著目标区域提取及效果评价 84

 4.4.1 显著目标区域提取 84

 4.4.2 显著区域提取效果评价 85

 总结和复习 89

5、 目标分割 91

 5.1 轮廓搜索 91

 5.1.1 图搜索 91

 5.1.2 动态规划 93

 5.2 主动轮廓模型 94

 5.2.1 主动轮廓 94

 5.2.2 能量函数 95

 5.3 基本阈值技术 97

 5.3.1 原理和分类 97

 5.3.2 全局阈值的选取 98

 5.3.3 局部阈值的选取 100

 5.3.4 动态阈值的选取 103

 5.4 特色阈值方法 103

 5.4.1 多分辨率阈值 103

 5.4.2 过渡区阈值 105

 5.5 特征空间聚类 107

 5.5.1 基本聚类方法 107

 5.5.2 均移确定聚类中心 108

 总结和复习 109

6、 目标表达和描述 111

 6.1 基于边界的表达 111

 6.1.1 链码 111

 6.1.2 边界段和凸包 113

 6.1.3 边界标记 114

 6.2 基于区域的表达 117

 6.2.1 四叉树 117

 6.2.2 金字塔 118

 6.2.3 围绕区域 119

 6.2.4 骨架 119

 6.3 基于边界的描述 122

 6.3.1 边界长度和直径 122

 6.3.2 边界形状数 123

 6.3.3 轮廓形状矩阵 124

 6.4 基于区域的描述 124

 6.4.1 区域面积和密度 124

 6.4.2 区域形状数 125

 6.4.3 区域不变矩 126

 6.4.4 拓扑描述符 128

 总结和复习 129

7、 纹理分析 131

 7.1 统计描述方法 131

 7.1.1 灰度共生矩阵 131

 7.1.2 基于共生矩阵的描述 133

 7.1.3 基于能量的描述 133

 7.2 结构描述方法 135

 7.2.1 结构描述原理 135

 7.2.2 纹理镶嵌 137

 7.2.3 局部二值模式 138

 7.3 频谱描述方法 140

 7.3.1 傅里叶频谱描述 140

 7.3.2 贝塞尔-傅里叶频谱描述 141

 7.3.3 盖伯频谱描述 142

 7.4 纹理图像分割 144

 7.4.1 有监督纹理分割 144

 7.4.2 无监督纹理分割 146

 总结和复习 148

8、 形状分析 150

 8.1 形状紧凑性描述符 150

 8.2 形状复杂性描述符 157

 8.3 基于多边形的形状分析 159

 8.3.1 多边形计算 159

 8.3.2 多边形描述 160

 8.4 基于曲率的形状分析 162

 8.4.1 轮廓曲率 162

 8.4.2 曲面曲率 165

 8.5 拓扑结构参数 166

 总结和复习 167

9、 立体视觉 169

 9.1 立体视觉模块 169

 9.2 双目成像和视差 171

 9.2.1 双目横向模式 171

 9.2.2 双目横向会聚模式 173

 9.2.3 双目纵向模式 174

 9.3 基于区域的立体匹配 175

 9.3.1 模板匹配 175

 9.3.2 双目立体匹配 177

 9.4 基于特征的立体匹配 183

 9.4.1 点对点的方法 183

 9.4.2 动态规划匹配 185

 总结和复习 186

10、三维景物恢复 189

 10.1 由光移恢复表面朝向 189

 10.1.1 表面反射特性 189

 10.1.2 目标表面朝向 192

 10.1.3 反射图 193

 10.1.4 光度立体学求解 195

 10.2 从影调获取形状信息 196

 10.2.1 影调与形状 196

 10.2.2 求解亮度方程 198

 10.3 纹理变化与表面朝向 200

 10.3.1 三种典型变化 200

 10.3.2 确定线段的纹理消失点 203

 10.4 根据焦距确定深度 206

 总结和复习 207

11、运动分析 209

 11.1 运动分类和表达 209

 11.2 全局运动检测 212

 11.2.1 利用图像差的检测 213

 11.2.2 基于模型的检测 215

 11.3 运动目标检测和分割 217

 11.3.1 背景建模 217

 11.3.2 运动目标跟踪 220

 11.3.3 运动目标分割 224

 11.4 运动光流和表面取向 225

 11.4.1 光流约束方程 225

 11.4.2 光流计算 225

 11.4.3 光流与表面取向 229

 总结和复习 232

12、景物识别 234

 12.1 统计模式分类 234

 12.1.1 模式分类原理 234

 12.1.2 最小距离分类器 235

 12.1.3 最优统计分类器 236

 12.1.4 自适应自举 239

 12.2 感知机 240

 12.2.1 感知机原理 240

 12.2.2 线性可分类感知机 241

 12.2.3 线性不可分类感知机 242

 12.3 支持向量机 243

 12.3.1 线性可分类支持向量机 243

 12.3.2 线性不可分类支持向量机 245

 12.4 结构模式识别 246

 12.4.1 字符串结构识别 246

 12.4.2 树结构识别 249

 总结和复习 251

13、广义匹配 253

 13.1 目标匹配 253

 13.1.1 匹配的度量 254

 13.1.2 字符串匹配 257

 13.1.3 惯量等效椭圆匹配 258

 13.1.4 形状矩阵匹配 259

 13.2 动态模式匹配 260

 13.3 关系匹配 263

 13.3.1 关系表达和距离 263

 13.3.2 关系匹配模型 264

 13.4 图同构匹配 266

 13.4.1 图论基础 266

 13.4.2 图同构和匹配 268

 总结和复习 270

14、时空行为理解 272

 14.1 时空技术 272

 14.2 时空兴趣点 273

 14.3 动态轨迹学习和分析 275

 14.3.1 自动场景建模 276

 14.3.2 路径学习 277

 14.3.3 自动活动分析 279

 14.4 动作分类和识别 280

 14.4.1 动作分类 280

 14.4.2 动作识别 281

 14.5 活动和行为建模 285

 14.5.1 动作建模 285

 14.5.2 活动建模和识别 288

 总结和复习 291

15、场景解释 293

 15.1 线条图标记解释 293

 15.2 体育比赛视频排序 296

 15.2.1 基于内容检索 296

 15.2.2 视频节目精彩度排序 298

 15.3 计算机视觉系统模型 302

 15.3.1 多层次串行结构 302

 15.3.2 知识库为中心的辐射结构 303

 15.3.3 知识库为根的树结构 303

 15.3.4 多模块交叉配合结构 304

 15.4 计算机视觉理论框架 305

 15.4.1 马尔视觉计算理论 305

 15.4.2 对马尔理论框架的改进 308

 15.4.3 新理论框架的研究 309

 总结和复习 311

部分练习题解答 313

参考文献 318

索引 324
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP