• 数学物理的几何方法(英文版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

数学物理的几何方法(英文版)

38.91 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[英]舒茨 著

出版社世界图书出版公司

出版时间2009-06

版次1

装帧平装

货号A8

上书时间2024-12-28

新起点书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [英]舒茨 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-06
  • 版次 1
  • ISBN 9787510004513
  • 定价 35.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 250页
  • 字数 185千字
  • 正文语种 英语
【内容简介】
Thisbookalmstointroducethebeginningorworkingphysicisttoawiderangeofaualytictoolswhichhavetheiror/ginindifferentialgeometryandwhichhaverecentlyfoundincreasinguseintheoreticalphysics.Itisnotuncom-montodayforaphysicistsmathematicaleducationtoignoreallbutthesim-plestgeometricalideas,despitethefactthatyoungphysicistsareencouragedtodevelopmentalpicturesandintuitionappropriatetophysicalphenomena.Thiscuriousneglectofpicturesofonesmathematicaltoolsmaybeseenastheoutcomeofagradualevolutionovermanycenturies.Geometrywascertainlyextremelyimportanttoancientandmedievalnaturalphilosophers;itwasingeometricaltermsthatPtolemy,Copernicus,Kepler,andGalileoallexpressedtheirthinking.ButwhenDescartesintroducedcoordinatesintoEuclideangeometry,heshowedthatthestudyofgeometrycouldberegardedasanappli.cationofalgrebra.Sincethen,the/mportanceofthestudyofgeometryintheeducationofscientistshassteadily
【作者简介】

Bernard ·Schutz,就职于马克斯·普朗克引力物理研究所(Max Planck Institute for Gravitational Physics)和卡迪夫大学(Cardiff University),广义相对论领域的专家和学者。他的另一部著作A First Course in General Relativity 2nd ed.(《广义相对论基础教程 第2版》978-7-5100-3293-6)2011年也已由世图影印出版。



【目录】
1Somebasicmathematics
1.1ThespaceRnanditstopology
1.2Mappings
1.3Realanalysis
1.4Grouptheory
1.5Linearalgebra
1.6Thealgebraofsquarematrices
1.7Bibliography

2Dffferentiablemanifoldsandtensors
2.1Defmitionofamanifold
2.2Thesphereasamanifold
2.3Otherexamplesofmanifolds
2.4Globalconsiderations
2.5Curves
2.6FunctionsonM
2.7Vectorsandvectorfields
2.8Basisvectorsandbasisvectorfields
2.9Fiberbundles
2.10Examplesoffiberbundles
2.11Adeeperlookatfiberbundles
2.12Vectorfieldsandintegralcurves
2.13Exponentiationoftheoperatord/dZ
2.14Liebracketsandnoncoordinatebases
2.15Whenisabasisacoordinatebasis?
2.16One-forms
2.17Examplesofone-forms
2.18TheDiracdeltafunction
2.19Thegradientandthepictorialrepresentationofaone-form
2.20Basisone-formsandcomponentsofone-forms
2.21Indexnotation
2.22Tensorsandtensorfields
2.23Examplesoftensors
2.24Componentsoftensorsandtheouterproduct
2.25Contraction
2.26Basistransformations
2.27Tensoroperationsoncomponents
2.28Functionsandscalars
2.29Themetrictensoronavectorspace
2.30Themetrictensorfieldonamanifold
2.31Specialrelativity
2.32Bibliography

3LiederivativesandLiegroups
3.1Introduction:howavectorfieldmapsamanifoldintoitself
3.2Liedraggingafunction
3.3Liedraggingavectorfield
3.4Liederivatives
3.5Liederivativeofaone-form
3.6Submanifolds
3.7Frobeniustheorem(vectorfieldversion)
3.8ProofofFrobeniustheorem
3.9Anexample:thegeneratorsors2
3.10Invariance
3.11Killingvectorfields
3.12Killingvectorsandconservedquantitiesinparticledynamics
3.13Axialsymmetry
3.14AbstractLiegroups
3.15ExamplesofLiegroups
3.16Liealgebrasandtheirgroups
3.17Realizationsandrepresentatidns
3.18Sphericalsymmetry,sphericalharmonicsandrepresentationsoftherotationgroup
3.19Bibliography
4DifferentialformsAThealgebraandintegralcalculusofforms
4.1Definitionofvolume-thegeometricalroleofdifferentialforms
4.2Notationanddefinitionsforantisymmetrictensors
4.3Differentialforms
4.4Manipulatingdifferentialforms
4.5Restrictionofforms
4.6Fieldsofforms
4.7Handednessandorientability
4.8Volumesandintegrationonorientedmanifolds
4.9N-vectors,duals,andthesymbol
4.10Tensordensities
4.11GeneralizedKroneckerdeltas
4.12Determinantsand
4.13MetricvolumeelementsBThedifferentialcalculusofformsanditsapplications
4.14Theexteriorderivative
4.15Notationforderivatives
4.16Familiarexamplesofexteriordifferentiation
4.17Integrabilityconditionsforpartialdifferentialequations
4.18Exactforms
4.19Proofofthelocalexactnessofclosedforms
4.20Liederivativesofforms
4.21Liederivativesandexteriorderivativescommute
4.22Stokestheorem
4.23Gausstheoremandthedefinitionofdivergence
4.24Aglanceatcohomologytheory
4.25Differentialformsanddifferentialequations
4.26Frobeninstheorem(differentialformsversion)
4.27ProofoftheequivalenceofthetwoversionsofFrobeniustheorem
4.28Conservationlaws
4.29Vectorsphericalharmonics
4.30Bibliography

5ApplicationsinphysicsAThermodynamics
5.1Simplesystems
5.2Maxwellandothermathematicalidentities
5.3Compositethermodynamicsystems:CaratheodorystheoremBHamilton/anmechanics
5.4Hamiltodianvectorfields
5.5Canonicaltransformations
5.6Mapbetweenvectorsandone-formsprovidedby
5.7Poissonbracket
5.8Many-particlesystems:symplecticforms
5.9Lineardynamicalsystems:thesymplecticinnerproductandconservedquantities
5.10FiberbundlestructureoftheHamiltonianequationsCElectromagnetism
5.11RewritingMaxwellsequationsusingdifferentialforms
5.12Chargeandtopology
5.13Thevectorpotential
5.14Planewaves:asimpleexampleDDynamicsofaperfectfluid
5.15RoleofLiederivatives
5.16Thecomovingtime-derivative
5.17Equationofmotion
5.18Conservationofvorticity
ECosmology
5.19Thecosmologicalprinciple
5.20Liealgebraofmaximalsymmetry
5.21Themetricofasphericallysymmetricthree-space
5.22ConstructionofthesixKillingvectors
5.23Open,closed,andflatuniverses
5.24Bibliography
6ConnectionsforRiemnnnianmanifoldsandgaugetheories
6.1Introduction
6.2Parallelismoncurvedsurfaces
6.3Thecovariantderivative
6.4Components:covariantderivativesofthebasis
6.5Torsion
6.6Geodesics
6.7Normalcoordinates
6.8Riemanntensor
6.9GeometricinterpretationoftheRiemanntensor
6.10Flatspaces
6.11Compatibilityoftheconnectionwithvolume-measureorthemetric
6.12Metricconnections
6.13Theaffineconnectionandtheequivalenceprinciple
6.14Connectionsandgaugetheories:theexampleofelectromagnetism
6.15Bibfiography
Appendix:solutionsandhintsforselectedexercises
Notation
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP