• 人工智能 复杂问题求解的结构和策略 英文版 第6版
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

人工智能 复杂问题求解的结构和策略 英文版 第6版

34.41 7.5折 46 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[美]卢格尔 著

出版社机械工业出版社

出版时间2009-03

版次1

装帧平装

货号A4

上书时间2024-11-08

新起点书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [美]卢格尔 著
  • 出版社 机械工业出版社
  • 出版时间 2009-03
  • 版次 1
  • ISBN 9787111256564
  • 定价 46.00元
  • 装帧 平装
  • 开本 32开
  • 纸张 胶版纸
  • 页数 753页
  • 正文语种 英语
  • 原版书名 Artificial Intelligence:Structures And Strategies For Complex Problem Solving
  • 丛书 经典原版书库
【内容简介】
  《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授权机械工业出版社独家出版。未经出版者书面许可,不得以任何方式复制或抄袭《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》内容。
  仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行。
  《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》封面贴有PearsonEducation(培生教育出版集团)激光防伪标签,无标签者不得销售。
【作者简介】
  GeorgeF.Luger1973年在宾夕法尼亚大学获得博士学位,并在之后的5年间在爱丁堡大学人工智能系进行博士后研究,现在是新墨西哥大学计算机科学研究、语言学及心理学教授。
【目录】
Preface
PublishersAcknowledgements
PARTⅠARTIFIClALINTELLIGENCE:ITSROOTSANDSCOPE
1A1:HISTORYANDAPPLICATIONS
1.1FromEdentoENIAC:AttitudestowardIntelligence,Knowledge,andHumanArtifice
1.20verviewofAlApplicationAreas
1.3ArtificialIntelligenceASummary
1.4EpilogueandReferences
1.5Exercises

PARTⅡARTIFlClALINTELLIGENCEASREPRESENTATIONANDSEARCH
2THEPREDICATECALCULUS
2.0Intr0血ction
2.1ThePropositionalCalculus
2.2ThePredicateCalculus
2.3UsingInferenceRulestoProducePredicateCalculusExpressions
2.4Application:ALogic-BasedFinancialAdvisor
2.5EpilogueandReferences
2.6Exercises

3STRUCTURESANDSTRATEGIESFORSTATESPACESEARCH
3.0Introducfion
3.1GraphTheory
3.2StrategiesforStateSpaceSearch
3.3usingthestateSpacetoRepresentReasoningwiththePredicateCalculus
3.4EpilogueandReferences
3.5Exercises

4HEURISTICSEARCH
4.0Introduction
4.lHillClimbingandDynamicProgrammin9
4.2TheBest-FirstSearchAlgorithm
4.3Admissibility,Monotonicity,andInformedness
4.4UsingHeuristicsinGames
4.5ComplexityIssues
4.6EpilogueandReferences
4.7Exercises

5STOCHASTICMETHODS
5.0Introduction
5.1TheElementsofCountin9
5.2ElementsofProbabilityTheory
5.3ApplicationsoftheStochasticMethodology
5.4BayesTheorem
5.5EpilogueandReferences
5.6Exercises

6coNTROLANDIMPLEMENTATIONOFSTATESPACESEARCH
6.0Introductionl93
6.1Recursion.BasedSearch
6.2ProductionSystems
6.3TheBlackboardArchitectureforProblemSolvin9
6.4EpilogueandReferences
6.5Exercises

PARTⅢCAPTURINGINTELLIGENCE:THEAICHALLENGE
7KNOWLEDGEREPRESENTATION
7.0IssuesinKnowledgeRepresentation
7.1ABriefHistoryofAIRepresentationalSystems
7.2ConceptualGraphs:ANetworkLanguage
7.3AlternativeRepresentationsandOntologies
7.4AgentBasedandDistributedProblemSolving
7.5EpilogueandReferences
7.6Exercises

8STRONGMETHODPROBLEMSOLVING
8.0Introduction
8.1OverviewofExpertSygemTechnology
8.2Rule.BasedExpertSygems
8.3Model-Based,CaseBasedandHybridSystems
8.4Planning
8.5EpilogueandReferences
8.6Exercises
9REASONINGINUNCERTAINSTUATIONS
9.0Introduction
9.1Logic-BasedAbductiveInference
9.2Abduction:AlternativestoLogic
9.3TheStochasticApproachtoUncertainty
9.4EpilogueandReferences
9.5Exercises

PARTⅣ
MACHINELEARNING
10MACHINELEARNING:SYMBOL-BASED
10.0Introduction
10.1AFrameworkforSymbolbasedLearning
10.2versionSpaceSearch
10.3TheID3DecisionTreeInductionAlgorithm
10.4InductiveBiasandLearnability
10.5KnowledgeandLearning
10.6UnsupervisedLearning
10.7ReinforcementLearning
10.8EpilogueandReferenees
10.9Exercises

11MACHINELEARNING:CONNECTIONtST
11.0Introduction
11.1FoundationsforConnectionistNetworks
11.2PerceptronLearning
11.3BackpropagationLearning
11.4CompetitiveLearning
11.5HebbianCoincidenceLearning
11.6AttractorNetworksor“Memories”
11.7EpilogueandReferences
11.8Exercises506

12MACHINELEARNING:GENETICANDEMERGENT
12.0GeneticandEmergentMedeIsofLearning
12.111IcGeneticAlgorithm
12.2ClassifierSystemsandGeneticProgramming
12.3ArtmcialLifeandSociety-BasedLearning
12.4EpilogueandReferences
12.5Exercises

13MACHINELEARNING:PROBABILISTIC
13.0StochasticandDynamicModelsofLearning
13.1HiddenMarkovModels(HMMs)
13.2DynamicBayesianNetworksandLearning
13.3StochasticExtensionstoReinforcementLearning
13.4EpilogueandReferences
13.5Exercises

PARTⅤ
AD,ANCEDTOPlCSFORAlPROBLEMSOLVING
14AUTOMATEDREASONING
14.0IntroductiontoWeakMethodsinTheoremProving
14.1TIIeGeneralProblemSolverandDifiel"enceTables
14.2ResolutionTheOremProving
14.3PROLOGandAutomatedReasoning
14.4FurtherIssuesinAutomatedReasoning
14.5EpilogueandReferences
14.6Exercises

15UNDERs-rANDINGNATURALLANGUAGE
15.0TheNaturalLang~~geUnderstandingProblem
15.1DeconstructingLanguage:AnAnalysis
15.2Syntax
15.3TransitionNetworkParsersandSemantics
15.4StochasticToolsforLanguageUnderstanding
15.5NaturalLanguageApplications
15.6EpilogueandReferences
15.7Exercises
……
PARTⅥEPILOGUE
16ARTIFICIALINTELLIGENCEASEMPIRICALENQUIRY
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP