全新正版 急速发货
¥ 53 4.9折 ¥ 109 全新
库存9件
作者李永华
出版社清华大学出版社
ISBN9787302577294
出版时间2021-08
装帧平装
开本16开
定价109元
货号29288362
上书时间2024-12-28
Python语言作为人工智能和大数据领域的主要开发语言,具有灵活性强、扩展性好、应用面广、移植性好、可嵌入等特点,近几年发展迅速,热度上涨,人才需求量逐年攀升,已经成为高等院校的专业课程。
作者为适应当前教育教学改革的要求,更好地践行人工智能模型与算法应用,以实践教学与创新能力培养为目标,采取创新方式,基于不同难度、不同类型、不同算法,融合同类教材的优点编写了本书并总结实际智能应用案例,希望在教育教学上起到抛砖引玉的作用。
本书的主要内容和素材来自开源网站的人工智能经典模型算法、信息工程专业创新课程内容,以及作者所在学校近几年承担的科研项目成果及作者指导学生完成的创新项目。
本书内容由总到分,先思考后实践,整体架构、系统流程与代码实现相结合,可供从事人工智能开发、机器学习和算法实现的专业技术人员作为技术参考书,提高其工程创新实践能力; 也可作为信息通信工程及相关专业本科生的参考书,为机器学习模型分析、算法设计、应用实现提供帮助。
本书的编写得到了*电子信息类专业教学指导委员会、信息工程专业国家类特色专业建设项目、信息工程专业国家第二类特色专业建设项目、*CDIO工程教育模式研究与实践项目、*本科教学工程项目、信息工程专业北京市特色专业建设、北京市教育教学改革项目、北京邮电大学教育教学改革项目(2019TD01)的大力支持,在此表示感谢!
由于作者经验与水平有限,书中疏漏及不妥之处在所难免,衷心希望各位读者多提宝贵意见。
作者2021年6月
本书以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员 提供较为详细的实战方案,以便深度学习。 在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程和实现模块等角度 论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌 握人工智能开发方法,本书配套提供项目设计工程文档、程序代码、实现过程中出现的问题及解决方法等 资源,可供读者举一反三、二次开发。 本书结合系统设计、代码实现以及运行结果展示进行讲解,语言简洁,深入浅出,通俗易懂,不仅适合 作为对Python编程感兴趣的科研人员、人工智能爱好者及从事智能应用创新开发专业人员的参考教材, 也可作为高等院校全栈系统应用开发相关专业的参考书。
本书以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员 提供较为详细的实战方案,以便深度学习。 在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程和实现模块等角度 论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌 握人工智能开发方法,本书配套提供项目设计工程文档、程序代码、实现过程中出现的问题及解决方法等 资源,可供读者举一反三、二次开发。 本书结合系统设计、代码实现以及运行结果展示进行讲解,语言简洁,深入浅出,通俗易懂,不仅适合 作为对Python编程感兴趣的科研人员、人工智能爱好者及从事智能应用创新开发专业人员的参考教材, 也可作为高等院校全栈系统应用开发相关专业的参考书。
李永华 北京邮电大学,教授,拥有超过10年的软硬件开发经验,长期致力于物联网、云计算与人工智能的研究工作。在教学中以兴趣为导向,激发学生的创造性;以素质为基础,提高自身教学水平;以科研为手段,促进教学理念的转变,在教学与科研实践中指导学生实现300余个创新案例。主持30余项与企事业单位课题的研究工作,在国内外学术期刊及会议发表论文100余篇,申请专利50余项,出版图书20余部。
项目1今日热点新闻推荐系统
1.1总体设计
1.1.1系统整体结构
1.1.2系统流程
1.2运行环境
1.3模块实现
1.3.1数据爬取
1.3.2新闻处理与聚类
1.3.3新闻推荐
1.4系统测试
1.4.1数据准备
1.4.2文本聚类
1.4.3热点新闻推荐
项目2音乐推荐系统
2.1总体设计
2.1.1系统整体结构
2.1.2系统流程
2.2运行环境
2.2.1Python环境
2.2.2MySQL环境
2.2.3VUE环境
2.3模块实现
2.3.1数据请求和储存
2.3.2数据处理
2.3.3数据存储与后台
2.3.4数据展示
2.4系统测试
项目3基于网页端的电影推荐
3.1总体设计
3.1.1系统整体结构
3.1.2系统流程
3.2运行环境
3.2.1Python环境
3.2.2PyCharm环境
3.2.3数据库
3.3模块实现
3.3.1数据爬取及处理
3.3.2模型训练及保存
3.3.3接口实现
3.3.4收集数据
3.3.5界面设计
3.4系统测试
项目4基于逻辑回归的音乐分类
4.1总体设计
4.1.1系统整体结构
4.1.2系统流程
4.2运行环境
4.2.1Python环境
4.2.2Visual Studio Code开发环境
4.2.3Nodejs环境
4.2.4ffmpeg环境
4.2.5其他环境
4.3模块实现
4.3.1数据预处理
4.3.2数据特征处理
4.3.3模型构建
4.3.4模型训练及保存
4.3.5模型预测
4.3.6前端模块
4.3.7后端模块
4.4系统测试
4.4.1训练准确率
4.4.2系统应用
项目5基于OpenCV和CNN的手语数字实时翻译
5.1总体设计
5.1.1系统整体结构
5.1.2系统流程
5.2运行环境
5.2.1Python环境
5.2.2TensorFlow环境
5.2.3Keras环境
5.2.4Android环境
5.3模块实现
5.3.1数据预处理
5.3.2数据增强
5.3.3模型构建
5.3.4模型训练及保存
5.3.5模型评估
5.3.6模型测试
5.4系统测试
5.4.1训练准确率
5.4.2测试效果
5.4.3模型应用
项目6比赛预测
6.1总体设计
6.1.1系统整体结构
6.1.2系统流程
6.2运行环境
6.2.1Python环境
6.2.2Jupyter Notebook环境
6.2.3PyCharm环境
6.2.4MATLAB环境
6.3模块实现
6.3.1数据预处理
6.3.2特征提取
6.3.3模型训练及评估
6.3.4模型训练准确率
6.4系统测试
6.4.1测试效果
6.4.2模型应用
项目7基于SVM分类垃圾短信
7.1总体设计
7.1.1系统整体结构
7.1.2系统流程
7.2运行环境
7.2.1Python环境
7.2.2Scikitlearn
7.2.3jieba环境
7.2.4MongoDB环境
7.2.5Apache PHP
7.3模块实现
7.3.1数据预处理
7.3.2模型训练及保存
7.3.3模型评估
7.3.4模型测试
7.4系统测试
项目8KNN数字验证码识别
8.1总体设计
8.1.1系统整体结构
8.1.2系统流程
8.2运行环境
8.3模块实现
8.3.1数据爬取
8.3.2去噪与分割
8.3.3模型训练及保存
8.3.4准确率验证
8.4系统测试
项目9基于VAE的图像生成
9.1总体设计
9.1.1系统整体结构
9.1.2系统流程
9.2运行环境
9.2.1Python环境
9.2.2TensorFlow环境
9.2.3GPU
9.3模块实现
9.3.1数据预处理
9.3.2模型构建及编译
9.3.3模型训练及图像生成
9.3.4不同数据集处理
9.4系统测试
9.4.1隐层可视化
9.4.2测试效果
9.4.3放大图像
项目10学年成绩预测
10.1总体设计
10.1.1系统整体结构
10.1.2系统流程
10.2运行环境
10.2.1Python环境
10.2.2Plotly库
10.2.3Scikitlearn库
10.3模块实现
10.3.1准备预处理
10.3.2数据可视化与分析
10.3.3特征提取
10.3.4模型训练及保存
10.4系统测试
项目11银行卡号数字识别
11.1总体设计
11.1.1系统整体结构
11.1.2系统流程
11.2运行环境
11.2.1Python环境
11.2.2TensorFlow环境
11.2.3OpenCV环境
11.3模块实现
11.3.1训练集图片处理
11.3.2测试图片处理
11.3.3模型训练及保存
11.3.4模型测试
11.4系统测试
11.4.1成功案例
11.4.2失败案例
项目12古诗与歌词生成
12.1总体设计
12.1.1系统整体结构
12.1.2系统流程
12.2运行环境
12.2.1Python环境
12.2.2TensorFlow环境
12.2.3PyCharm环境
12.3模块实现
12.3.1数据预处理
12.3.2模型构建
12.3.3模型训练及保存
12.3.4使用模型生成古诗
12.3.5产生藏头诗
12.3.6用词云展示生成的古诗
12.4歌词生成
12.4.1数据预处理
12.4.2模型构建
12.4.3模型训练及保存
12.4.4生成歌词
12.5系统测试
12.5.1生成古诗和藏头诗
12.5.2生成歌词
项目13语音识别与方言分类
13.1总体设计
13.1.1系统整体结构
13.1.2系统流程
13.2运行环境
13.2.1Python环境
13.2.2TensorFlow环境
13.3模块实现
13.3.1方言分类
13.3.2语音识别
13.3.3模型测试
13.4系统测试
13.4.1训练准确率
13.4.2测试效果
13.4.3模型应用
项目14智能聊天室
14.1总体设计
14.1.1系统整体结构
14.1.2系统流程
14.2运行环境
14.2.1Python环境
14.2.2库安装
14.2.3图灵聊天机器人API
14.2.4百度云服务器配置
14.3模块实现
14.3.1聊天模块
14.3.2文件图片(表情包)
14.3.3音视频通话
14.3.4人脸识别
14.3.5截图功能
14.3.6聊天机器人
14.4系统测试
14.4.1人脸测试效果
14.4.2聊天效果测试
14.4.3文件操作测试
14.4.4截图操作测试
项目15基于OpenCV的答题卡识别系统
15.1总体设计
15.1.1系统整体结构
15.1.2系统流程
15.2运行环境
15.2.1Python环境
15.2.2PyCharm安装
15.2.3OpenCV环境
15.3模块实现
15.3.1信息识别
15.3.2Excel导出模块
15.3.3图形用户界面模块
15.3.4手写识别模块
15.4系统测试
15.4.1系统识别准确率
15.4.2系统识别应用
项目16人脸识别添加护具系统
16.1总体设计
16.1.1系统整体结构
16.1.2系统流程
16.2运行环境
16.2.1Python环境
16.2.2Tkinter调用
16.2.3OpenCV安装
16.2.4库环境
16.3模块实现
16.3.1页面布局
16.3.2图像加载
16.3.3图像识别
16.4系统测试
项目17LPR车牌识别
17.1总体设计
17.1.1系统整体结构
17.1.2系统流程
17.2运行环境
17.2.1Python环境
17.2.2OpenCV环境
17.2.3Android环境
17.3模块实现
17.3.1数据预处理
17.3.2模型训练
17.3.3APP构建
17.4系统测试
17.4.1训练分数和损失可视化
17.4.2APP测试结果
项目18动漫人物识别
18.1总体设计
18.1.1系统整体结构
18.1.2系统流程
18.2运行环境
18.2.1爬虫
18.2.2模型训练
18.2.3实际应用
18.3模块实现
18.3.1数据准备
18.3.2数据处理
18.3.3模型训练及保存
18.3.4模型测试
18.4系统测试
18.4.1测试效果
18.4.2模型应用
项目19基于遗传神经网络的“外星人入侵”
19.1总体设计
19.1.1系统整体结构
19.1.2系统流程
19.2运行环境
19.3模块实现
19.3.1游戏设置
19.3.2模型训练
19.3.3数据绘图
19.3.4UI界面
19.4系统测试
19.4.1测试效果
19.4.2运行结果
19.4.3模型应用
项目20中草药识别的微信小程序
20.1总体设计
20.1.1系统整体结构
20.1.2系统流程
20.2运行环境
20.3模块实现
20.3.1从百度AI申请API
20.3.2云函数
20.3.3API调用
20.3.4资料存储
20.3.5页面设计
20.4系统测试
20.4.1开发者平台测试
20.4.2小程序真机测试
本书以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员 提供较为详细的实战方案,以便深度学习。 在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程和实现模块等角度 论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌 握人工智能开发方法,本书配套提供项目设计工程文档、程序代码、实现过程中出现的问题及解决方法等 资源,可供读者举一反三、二次开发。 本书结合系统设计、代码实现以及运行结果展示进行讲解,语言简洁,深入浅出,通俗易懂,不仅适合 作为对Python编程感兴趣的科研人员、人工智能爱好者及从事智能应用创新开发专业人员的参考教材, 也可作为高等院校全栈系统应用开发相关专业的参考书。
李永华 北京邮电大学,教授,拥有超过10年的软硬件开发经验,长期致力于物联网、云计算与人工智能的研究工作。在教学中以兴趣为导向,激发学生的创造性;以素质为基础,提高自身教学水平;以科研为手段,促进教学理念的转变,在教学与科研实践中指导学生实现300余个创新案例。主持30余项与企事业单位课题的研究工作,在国内外学术期刊及会议发表论文100余篇,申请专利50余项,出版图书20余部。
— 没有更多了 —
以下为对购买帮助不大的评价