• Intelligent Optimization (智能优化)
21年品牌 40万+商家 超1.5亿件商品

Intelligent Optimization (智能优化)

全新正版 急速发货

38.8 6.7折 58 全新

库存5件

天津武清
认证卖家担保交易快速发货售后保障

作者Changhe Li

出版社中国地质大学出版社

ISBN9787562552307

出版时间2022-03

装帧平装

开本16开

定价58元

货号29480498

上书时间2024-12-25

当科图书专营店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
Part I  The Basics
  1  Introduction
    1.1  Optimization and Machine Learning
    1.2  Optimization Problems
      1.2.1  Mathematical Formulation
      1.2.2  Continuous Optimization versus Discrete Optimization
    1.3  Optimization Algorithms
      1.3.1  Deterministic Algorithms and Probabilistic Algorithms
      1.3.2  Intelligent Optimization Techniques
  2  Fundamentals
    2.1  Fitness Landscapes
      2.1.1  Solution Space
      2.1.2  Objective Space
      2.1.3  Neighbourhood
      2.1.4  Global Optimum
      2.1.5  Local Optimum
    2.2  Properties of Fitness Landscape
      2.2.1  Modality
      2.2.2  Ruggedness
      2.2.3  Deceptiveness
      2.2.4  Neutrality
      2.2.5  Separability
      2.2.6  Scalability
      2.2.7  Domino convergence
      2.2.8  Property Control
    2.3  Computational Complexity
      2.3.1  Complexity Measures
      2.3.2  P Versus NP Problem
  3  Canonical Optimization Algorithms
    3.1  Numerical Optimization Algorithms
      3.1.1  Line Search
      3.1.2  Steepest Descent Method
      3.1.3  Newton Method
      3.1.4  Conjugate Gradient Method
    3.2  State Space Search
      3.2.1  State Space
      3.2.2  Uninformed Search
      3.2.3  Informed Search
    3.3  Single-solution-based Random Search
      3.3.1  Hill Climbing
      3.3.2  Simulated Annealing
      3.3.3  Iterated Local Search
      3.3.4  Variable Neighborhood Search
  4  Basics of Evolutionary Computation Algorithms
    4.1  Introduction
      4.1.1  Biological Evolution
      4.1.2  Origin of Evolutionary Algorithms
      4.1.3  Basic Evolutionary Processes
      4.1.4  Developments
      4.1.5  Related Resources
    4.2  Solution Representation
      4.2.1  Binary Representation
      4.2.2  Integer Representation
      4.2.3  Real-valued Representation
      4.2.4  Tree Representation
      4.2.5  The Effect of Representation
    4.3  Selection
      4.3.1  Parents Selection
      4.3.2  Survivor Selection
      4.3.3  Age-based Replacement
      4.3.4  Fitness-based Replacement
      4.3.5  Selection Pressure
    4.4  Reproduction
      4.4.1  Mutation
      4.4.2  Recombination
  5  Popular Evolutionary Computation Algorithms
    5.1  Genetic Algorithms
      5.1.1  Basic Principle and Framework
      5.1.2  Applications of Genetic Algorithms
    5.2  Evolutionary Programming
      5.2.1  The Emerging of Evolutionary Programming
      5.2.2  The Classical Evolutionary Programming
      5.2.3  Framework and Parameter Settings
      5.2.4  Recent Advances in Evolutionary Programming
    5.3  Genetic Programming
      5.3.1  Introduction
      5.3.2  Genotype-phenotype Mapping
      5.3.3  Other Genome Structures
      5.3.4  Open Issues
    5.4  Particle Swarm Optimization
      5.4.1  The Arising of Particle Swarm Optimization
      5.4.2  Original Particle Swarm Optimization
      5.4.3  Standard Particle Swarm Optimization
      5.4.4  Recent Advances in Particle Swarm Optimization
    5.5  Differential Evolution
      5.5.1  Introduction of Differential Evolution
      5.5.2  Framework and Parameter Settings
      5.5.3  Some Advances in Differential Evolution
    5.6  Evolution Strategy
      5.6.1  Basic Evolution Strategy Paradigm
      5.6.2  Covariance Matrix Adaptation Evolution Strategy
    5.7  Estimation of Distribution Algorithm
      5.7.1  Standard Procedures
      5.7.2  Discrete Versions
      5.7.3  Continuous Versions
    5.8  Ant Colony Optimization
      5.8.1  Biological Inspiration
      5.8.2  ACO framework
      5.8.3  ACO Variants
      5.8.4  Recent Advances
  6  Parameter Control and Policy Control
    6.1  Parameter Control
      6.1.1  Unary Parameter Control
      6.1.2  Multi-parameter Control
      6.1.3  Discussions
    6.2  Policy Control
      6.2.1  Operator Selection Control
      6.2.2  Hyper-heuristics
      6.2.3  Discussions
  7  Exploitation versus Explorat

内容摘要
    本书分两部分,第一部分介绍基本的智能优化方法,包括传统的启发式搜索算法以及以演化算法为代表的群智能搜索方法;第二部分介绍演化优化领域常见的优化问题,包括多模优化,多目标优化,约束优化,动态优化,鲁棒优化等,以及实际生产生活中的优化实例。本书知识点新,展现智能优化的发展过程与趋势,选用了当前该领域近期新的研究成果。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP