• 商业分析:基于数据科学及人工智能技术的决策支持系统(原书第11版)
21年品牌 40万+商家 超1.5亿件商品

商业分析:基于数据科学及人工智能技术的决策支持系统(原书第11版)

全新正版 急速发货

99.3 5.0折 199 全新

库存12件

天津武清
认证卖家担保交易快速发货售后保障

作者[美]拉姆什·沙尔达,[美]杜尔森·德伦,[美]埃弗瑞姆·特班 著

出版社机械工业出版社

ISBN9787111704355

出版时间2022-05

装帧平装

开本16开

定价199元

货号29411033

上书时间2024-12-22

当科图书专营店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
前言

分析已经成为这十年的技术驱动力。IBM、Oracle、Microsoft等公司正在创建专注于分析的新组织单元,这有助于企业提高效率。决策者正在利用数据和计算机工具做出更好的决策,甚至消费者也在直接或间接地使用分析工具,来对购物、医疗保健和娱乐等日常活动做出决策。商业分析(BA)/数据科学(DS)/决策支持系统(DSS)/商务智能(BI)领域发展迅速,更专注于创新的方法和应用程序,以利用甚至在之前的一段时间没有捕获到(更不用说以任何重要的方式进行分析)的数据流。客户关系管理、银行和金融业、医疗保健和医药、体育和娱乐、制造业和供应链管理、公用事业和能源,以及几乎所有可以想象的行业每天都会出现新的应用程序。
本书的主题是用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用程序外,此版本还通过介绍人工智能、机器学习、机器人技术、聊天机器人、物联网和与互联网相关的使能技术,并提供示例,带领读者深入了解各种类型的分析。我们强调这些技术是现代商业分析系统的新兴组成部分。人工智能技术通过实现自主决策和支持决策过程中的步骤,对决策产生重大影响。人工智能和分析相互支持,通过协同来协助决策。
本书的目的是向读者介绍通常称为分析或商业分析(众所周知的其他名称还有决策支持系统、执行信息系统和商务智能等)的技术,可以等价地使用这些术语。本书介绍用于设计和开发这些系统的基本方法及技术。此外,我们还介绍人工智能的基本原理以及独立的决策支持规程。
我们遵循EEE(接触、体验、探索)方法来介绍这些主题。本书主要介绍各种分析技术以及它们的应用。我们的想法是,读者将从其他组织如何使用分析做出决策或获得竞争优势受到启发。我们相信,这种接触学习的方法以及如何实现它是学习分析的关键。在描述这些技术时,我们还介绍了可用于开发此类应用程序的特定软件工具。本书不局限于任何一个软件工具,因此读者可以使用任何数量的可用软件工具体验这些技术。每一章都有具体建议,但是读者可以使用许多不同的软件工具。后,我们希望这种接触和体验能够激励读者探索这些技术在各自领域的潜力。
第11版中所做的改进主要集中在三个方面:重组、内容更新(包括人工智能、机器学习、聊天机器人和机器人技术)和更清晰的焦点。尽管本书内容有了许多变化,但我们仍然保持了过去几十年使本书成为畅销书的全面性和用户友好性。我们还优化了本书的篇幅和内容:去除了旧的、多余的材料,添加和组合了与当前趋势相符的材料。后,我们提供了没有在任何其他书中出现过的准确和更新的材料。接下来我们将详细描述第11版的变化。
第11版有什么新内容
为了改进内容并与不断发展的技术趋势保持同步,本版本进行了一次重大重组,以更好地反映当前对分析及其支持的技术的关注。本书的前三个版本从传统的DSS转换为BI,然后从BI转换为BA,并与Teradata大学网络(TUN)建立了紧密的联系。以下总结了对本版本所做的主要更改。
新组织。本书现在主要围绕两个主题进行组织:不同类型的分析的动机、概念和方法(主要集中在预测性和规范性分析上);驱动现代分析领域的新技术,如人工智能、机器学习、深度学习、机器人技术、物联网、智能/机器人协作辅助系统等。全书共五部分。部分(第1~3章)介绍分析与人工智能:第1章介绍决策支持和相关技术的历程,首先简要介绍经典的决策和决策支持系统,然后介绍商务智能,后介绍分析、大数据和人工智能;第2章对人工智能进行更深入的介绍;第3章介绍数据问题以及描述性分析,包括统计概念和可视化。第二部分(第4~7章)介绍预测性分析和机器学习:第4章介绍数据挖掘的应用和数据挖掘过程;第5章介绍用于预测性分析的机器学习技术;第6章介绍深度学习和认知计算;第7章关注文本挖掘应用以及Web分析,包括社交分析、情感分析等。第三部分(第8和9章)介绍规范性分析和大数据:第8章讨论规范性分析,包括优化和仿真;第9章介绍大数据分析的更多细节,还介绍基于云的分析和位置分析。第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网:第10章介绍工业和消费者应用中的机器人,并研究这些设备对未来社会的影响;第11章着重于协作系统、众包;第12章回顾个人助理、聊天机器人,以及这个领域令人兴奋的发展;第13章研究物联网及其在决策支持和智能社会中的潜力。第五部分(第14章)简要讨论分析以及人工智能的安全、隐私和社会层面的内容。
新的章节。我们应该注意到,本书包含的几章已在《商务智能:数据分析的管理视角(原书第4版)》(Pearson,2018)(以下简称BI4e)中提供。这些章节的结构和内容在编入本书之前已经有所更新,但下面各章的变化更为显著。当然,BI4e的一些章节并没有包含在本书的前几个版本中。
第2章 该章介绍了人工智能的基本原理,概述了人工智能的优点,并将人工智能与人类智能进行了比较,描述了人工智能的应用领域。通过会计、金融服务、人力资源管理、市场营销和CRM以及生产运营管理中的示例应用说明了人工智能给业务带来的好处(全新)。
第6章 该章涵盖了深度学习以及日益流行的人工智能课题—认知计算。该章几乎是全新的(90%是新内容)。
第10章 该章介绍了许多机器人技术在工业和消费者中的应用,并总结了这些进步对就业的影响和一些法律后果(全新)。
第12章 该章集中讨论不同类型的知识系统,涵盖了新一代专家系统和推荐人、聊天机器人、企业聊天机器人、虚拟个人助理和机器人顾问(95%是新内容)。
第13章 该章介绍了物联网作为分析和人工智能应用的推动因素,详细介绍了以下技术:智能家居和家电、智慧城市(包括工厂)和自动驾驶(全新)。
第14章 该章主要介绍智能系统(包括分析)的实施问题,所涉及的主要问题是隐私保护、道德等。该章还讨论了这些技术对组织和人员的影响,特别是对工作的影响,特别关注了分析和人工智能(机器人)可能带来的潜在危险。然后,研究了相关的技术趋势并评估了分析和人工智能的未来(85%是新内容)。
流线型覆盖。我们通过添加大量新材料来涵盖且尖端的分析和人工智能趋势及技术,同时去除了大多数较旧、使用较少的材料,从而优化了本书的篇幅和内容。我们使用专门的网站为本书提供一些旧的材料,以及更新的内容和链接。
修订和更新内容。有几章有新的开篇小插曲,它们基于近的故事和事件。此外,全书的应用案例都是新的,或者已经被更新,以包括特定技术/模型的应用的案例。这些应用案例现在包括鼓励课堂讨论的问题,以及对具体案例和相关材料的进一步探索。全书添加了新的网站链接,还删除了许多旧的产品链接和参考文献。对每一章的具体修改如下:第1章、第3~5章和第7~9章在很大程度上借鉴了BI4e的内容。
第1章 该章包括上一版第1章和第2章中的一些材料,还包括几个新的应用案例、关于人工智能的全新材料,当然还有本书的内容规划(约50%是新内容)。
第3章
75%的内容是新的。
大多数与数据性质和统计分析有关的内容是新的。
新的开篇案例。
大部分是新案例。
第4章
25%的内容是新的。
有些应用案例是新的。
第5章
40%的内容是新的。
新的机器学习方法:朴素贝叶斯、贝叶斯网络和集成建模。
大多数案例是新的。
第7章
25%的内容是新的。
有些案例是新的。
第8章
包括一个新的应用案例。
20%的内容是新的。
第9章 该章的内容进行了大量更新,扩大了流分析的覆盖范围,还更新了BI4e的第7章和第8章的内容(50%是新内容)。
第11章 该章进行了全面修订,重新组合了群体决策内容。新主题包括集体和合作智慧、众包、群体人工智能和所有相关活动的人工智能支持(80%是新内容)。



导语摘要

本书主要介绍用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用外,本书还介绍了人工智能、机器学习、机器人技术、聊天机器人、物联网和互联网技术。

全书分为五部分,部分(第1~3章)概述分析与人工智能,第二部分(第4~7章)介绍预测性分析和机器学习,第三部分(第8和9章)深入研究规范性分析和大数据,第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网,第五部分(第14章)讨论分析与人工智能对安全、隐私和社会等方面的影响。

本书的读者对象包括数据分析、商务智能相关专业的学生和研究人员,以及商业分析、决策支持系统相关从业人员。



作者简介

拉姆什·沙尔达(Ramesh Sharda)


威斯康星大学麦迪逊分校工商管理硕士、博士。他是Research and Graduate Programs的副主任,沃森/康菲公司的主席,以及俄克拉荷马州立大学斯皮尔斯商学院管理科学和信息系统的杰出贡献教授,并且是Decision Support Systems、Decision Sciences、ACM Database等期刊的编委会成员。他与政府和工业界合作开展过许多研究项目,还担任过许多组织的顾问。他获得了2013年INFORMS计算协会HG终身服务奖,2016年入选俄克拉荷马州高等教育名人堂。他是INFORMS的会士。


 


杜尔森·德伦(Dursun Delen)


俄克拉荷马州立大学博士。他是Business Analytics的Spears和Patterson主席、卫生系统创新中心研究主任,以及俄克拉荷马州立大学斯皮尔斯商学院管理科学和信息系统的杰出贡献教授。他经常应邀参加国际会议,就商业分析、大数据、数据/文本挖掘、商务智能、决策支持系统和知识管理相关主题发表演讲。他曾担任第四届网络计算和高级信息管理国际会议的联合主席。他还是Journal of Business Analytics的主编、Journal of Business Research的大数据和商业分析领域编辑。他出版了8本书籍,发表了超过100篇同行评议的期刊文章。


 


埃弗瑞姆·特班(Efraim Turban)


加州大学伯克利分校工商管理硕士、博士。他是夏威夷大学太平洋信息系统管理研究所的访问学者,还是世界各地许多大型企业的顾问。他曾就职于香港城市大学、理海大学、佛罗里达国际大学、加州州立大学长滩分校、东伊利诺伊大学以及南加利福尼亚大学。他出版了22本书籍,在主流期刊上发表了110多篇论文。



目录

前言
致谢
作者简介
部分 分析和人工智能简介
第1章 用于决策支持的商务智能、分析、数据科学和人工智能系统概述2
1.1 开篇小插曲:通力电梯和自动扶梯公司的智能系统是如何工作的3
1.2 不断变化的商业环境、决策支持与分析需求5
1.3 决策过程和计算机化决策支持框架8
1.4 计算机决策支持向商务智能/分析/数据科学的发展20
1.5 分析概述29
1.6 相关领域中的分析示例37
1.7 人工智能简介50
1.8 分析与人工智能的融合58
1.9 分析生态系统综述63
1.10 本书规划64
1.11 相关资源65
本章要点66
讨论67
参考文献67
第2章 人工智能:概念、驱动力、主要技术和商业应用70
2.1 开篇小插曲:INRIX解决了交通问题71
2.2 人工智能概论73
2.3 人类智能与计算机智能79
2.4 主要人工智能技术和衍生产品82
2.5 人工智能对决策的支持91
2.6 人工智能在会计中的应用95
2.7 人工智能在金融服务中的应用97
2.8 人工智能在人力资源管理中的应用101
2.9 人工智能在营销、广告和客户关系管理中的应用103
2.10 人工智能在生产运营管理中的应用107
本章要点109
讨论110
参考文献111
第3章 数据性质、统计建模和可视化113
3.1 开篇小插曲:SiriusXM通过数据驱动型营销吸引新一代的广播消费者114
3.2 数据的性质117
3.3 简单的数据分类法120
3.4 数据预处理的艺术和科学124
3.5 用于业务分析的统计建模133
3.6 用于推论统计的回归建模143
3.7 业务报告154
3.8 数据可视化157
3.9 不同类型的图表和图形162
3.10 视觉分析的出现165
3.11 信息仪表板172
本章要点177
讨论177
参考文献178
第二部分 预测性分析/机器学习
第4章 数据挖掘过程、方法和算法182
4.1 开篇小插曲:美国迈阿密戴德警察局使用预测性分析来预测和打击犯罪182
4.2 数据挖掘概念186
4.3 数据挖掘应用196
4.4 数据挖掘过程199
4.5 数据挖掘方法206
4.6 数据挖掘软件工具221
4.7 数据挖掘隐私问题、误解和失误227
本章要点231
讨论232
参考文献233
第5章 用于预测性分析的机器学习技术234
5.1 开篇小插曲:预测建模有助于更好地理解和管理复杂的医疗程序234
5.2 神经网络的基本概念237
5.3 神经网络架构241
5.4 支持向量机245
5.5 基于过程的支持向量机使用方法254
5.6 用于预测的邻近法256
5.7 朴素贝叶斯分类法260
5.8 贝叶斯网络268
5.9 集成建模274
本章要点286
讨论287
参考文献288
第6章 深度学习和认知计算290
6.1 开篇小插曲:利用深度学习和人工智能打击欺诈291
6.2 深度学习介绍294
6.3 “浅”神经网络基础299
6.4 基于神经网络系统的开发流程308
6.5 阐明ANN黑箱原理314
6.6 深度神经网络317
6.7 卷积神经网络323
6.8 循环网络和长短期记忆网络334
6.9 实现深度学习的计算机框架341
6.10 认知计算344
本章要点354
讨论356
参考文献357
第7章 文本挖掘、情感分析和社交分析360
7.1 开篇小插曲:Amadori集团将消费者情感转化为近实时销售361
7.2 文本分析和文本挖掘概述363
7.3 自然语言处理369
7.4 文本挖掘应用375
7.5 文本挖掘过程382
7.6 情感分析390
7.7 Web挖掘概述401
7.8 搜索引擎406
7.9 Web使用情况挖掘(Web分析)413
7.10 社交分析419
本章要点428
讨论429
参考文献430
第三部分 规范性分析和大数据
第8章 规范性分析:优化与仿真434
8.1 开篇小插曲:费城学区使用规范性分析来寻找外包巴士路线的解决方案435
8.2 基于模型的决策436
8.3 决策支持的数学模型的结构442
8.4 确定性、不确定性和风险444
8.5 电子表格决策模型446
8.6 数学规划优化450
8.7 多重目标、灵敏度分析、假设分析和单变量求解460
8.8 基于决策表和决策树的决策分析464
8.9 仿真简介466
8.10 视觉交互仿真473
本章要点478
讨论479
参考文献479
第9章 大数据、云计算和位置分析:概念和工具481
9.1 开篇小插曲:在电信公司中使用大数据方法分析客户流失情况482
9.2 大数据定义485
9.3 大数据分析基础490
9.4 大数据技术494
9.5 大数据与数据仓库503
9.6 内存分析和Apache Spark508
9.7 大数据和流分析514
9.8 大数据提供商和平台519
9.9 云计算和业务分析526
9.10 基于位置的组织分析537
本章要点544
讨论544
参考文献545
第四部分 机器人、社交网络、人工智能与物联网
第10章 机器人:工业和消费者领域的应用548
10.1 开篇小插曲:机器人为患者和儿童提供情感支持548
10.2 机器人技术概述551
10.3 机器人技术的历史552
10.4 机器人技术的应用实例554
10.5 机器人的组件563
10.6 各种各样的机器人565
10.7 无人驾驶汽车:运动中的机器人566
10.8 机器人对当前和未来工作的影响569
10.9 机器人和人工智能的法律含义571
本章要点574
讨论575
参考文献575
第11章 群体决策、协作系统和AI支持578
11.1 开篇小插曲:HMS与团队合作表现出色579
11.2 分组决策:特点、过程、好处和机能障碍581
11.3 使用计算机系统支持团队工作和团队协作584
11.4 软件支持团队通信与协作586
11.5 计算机直接支持集体决策590
11.6 集体智慧和合作智慧595
11.7 众包作为决策支持的一种方法599
11.8 人工智能和群体人工智能支持团队协作和群体决策603
11.9 人机协作和机器人团队607
本章要点611
讨论612
参考文献612
第12章 知识系统:专家系统、推荐人、聊天机器人、虚拟个人助理和机器人顾问614
12.1 开篇小插曲:丝芙兰与聊天机器人的出色表现615
12.2 专家系统和推荐人616
12.3 聊天机器人的概念、驱动程序和好处626
12.4 企业聊天机器人630
12.5 虚拟个人助理638
12.6 聊天机器人作为专业顾问(机器人顾问)643
12.7 实施问题648
本章要点650
讨论651
参考文献652
第13章 物联网智能应用平台654
13.1 开篇小插曲:CNH Industrial利用物联网异军突起654
13.2 物联网要素656
13.3 物联网的主要优势和驱动因素660
13.4 物联网的工作原理662
13.5 传感器及其在物联网中的作用663
13.6 物联网应用示例668
13.7 智能家居和家电670
13.8 智慧城市和工厂674
13.9 自动驾驶汽车682
13.10 实施物联网和管理的考虑因素685
本章要点688
讨论689
参考文献689
第五部分 关于分析和人工
智能的说明
第14章 实施人工智能的问题:从伦理和隐私到组织和社会影响694
14.1 开篇小插曲:为什么优步向Waymo支付2.45亿美元694
14.2 实施智能系统概述696
14.3 法律、隐私和伦理问题698
14.4 成功部署智能系统705
14.5 智能系统对组织的影响708
14.6 智能系统对职业和工作的影响714
14.7 机器人、人工智能和分析建模的潜在危险721
14.8 相关技术趋势724
14.9 智能系统的未来728
本章要点733
讨论733
参考文献734
术语表737



内容摘要

本书主要介绍用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用外,本书还介绍了人工智能、机器学习、机器人技术、聊天机器人、物联网和互联网技术。


全书分为五部分,部分(第1~3章)概述分析与人工智能,第二部分(第4~7章)介绍预测性分析和机器学习,第三部分(第8和9章)深入研究规范性分析和大数据,第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网,第五部分(第14章)讨论分析与人工智能对安全、隐私和社会等方面的影响。


本书的读者对象包括数据分析、商务智能相关专业的学生和研究人员,以及商业分析、决策支持系统相关从业人员。



主编推荐

拉姆什·沙尔达(Ramesh Sharda)

威斯康星大学麦迪逊分校工商管理硕士、博士。他是Research and Graduate Programs的副主任,沃森/康菲公司的主席,以及俄克拉荷马州立大学斯皮尔斯商学院管理科学和信息系统的杰出贡献教授,并且是Decision Support Systems、Decision Sciences、ACM Database等期刊的编委会成员。他与政府和工业界合作开展过许多研究项目,还担任过许多组织的顾问。他获得了2013年INFORMS计算协会HG终身服务奖,2016年入选俄克拉荷马州高等教育名人堂。他是INFORMS的会士。

 

杜尔森·德伦(Dursun Delen)

俄克拉荷马州立大学博士。他是Business Analytics的Spears和Patterson主席、卫生系统创新中心研究主任,以及俄克拉荷马州立大学斯皮尔斯商学院管理科学和信息系统的杰出贡献教授。他经常应邀参加国际会议,就商业分析、大数据、数据/文本挖掘、商务智能、决策支持系统和知识管理相关主题发表演讲。他曾担任第四届网络计算和高级信息管理国际会议的联合主席。他还是Journal of Business Analytics的主编、Journal of Business Research的大数据和商业分析领域编辑。他出版了8本书籍,发表了超过100篇

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP