• Bifurcation Dynamics in Polynomial Discrete Systems(英文版)多项式离散系统的分岔动力学
21年品牌 40万+商家 超1.5亿件商品

Bifurcation Dynamics in Polynomial Discrete Systems(英文版)多项式离散系统的分岔动力学

全新正版 急速发货

136.3 6.8折 199 全新

库存5件

天津武清
认证卖家担保交易快速发货售后保障

作者Albert C. J. Luo(罗朝俊

出版社高等教育出版社

ISBN9787040557831

出版时间2021-05

装帧平装

开本16开

定价199元

货号29251332

上书时间2024-12-15

当科图书专营店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要

本书是*本关于一维多项式非线性离散系统分岔动力学的专著。本书给出了多项式非线性离散系统分岔的一般条件,全面地讨论了一维多项式离散系统中高阶奇异不动点的出现分岔和切换分岔,系统地分析讨论了倍周期分岔和单调鞍点分岔所产生的周期-1到混沌的分岔树,提出了多项式离散系统的周期-2及全局倍周期重整化方法,并且首次确定了分岔树上周期-n不动点的出现机理和相应的倍周期重整化。读者将在书中看到非线性离散系统中妙趣横生的研究结果。 ? 首先讨论了一维线性离散动力系统不动点的稳定性。 ? 系统地讨论了二次、三次、四次多项式的离散动力系统不动点的稳定性及解的复杂性。 ? 讨论了2m 次多项式和2m 1 次多项式的离散动力系统不动点的稳定性及分岔的复杂性。 ? 展示了其单调和振荡的出现和切换分岔,包括单调和振荡上下鞍点分岔、单调和振荡源分岔、单调和振荡汇分岔。 ? 首次提出了此类多项式离散系统的周期-2及全局倍周期重整化方法。 ? 首次确定了分岔树上周期-n不动点的出现机理。 ? 给出了此类多项式离散系统通向混沌的解析表达式。



目录
1  Quadratic Nonlinear Discrete Systems

1.1  Linear Discrete Systems

1.2  Forward Quadratic Discrete Systems

1.2.1  Period-1 Appearing Bifurcations

1.2.2  Period-1 Switching Bifurcations

1.3  Backward Quadratic Discrete Systems

1.3.1  Backward Period-1 Appearing Bifurcations

1.3.2  Backward Period-1 Switching Bifurcations

1.4  Forward Bifurcation Trees

1.4.1  Period-2 Appearing Bifurcations

1.4.2  Period-Doubling Renormalization

1.4.3  Period-n Appearing and Period-Doublization

1.4.4  Period-n Bifurcation Trees

1.5  Backward Bifurcation Trees

1.5.1  Backward Period-2 Quadratic Discrete Systems

1.5.2  Backward Period-Doubling Renormalization

1.5.3  Backward Period-n Appearing and Period-Doublization

1.5.4  Backward Period-n Bifurcation Trees

References

2  Cubic Nonlinear Discrete Systems

2.1  Period-1 Cubic Discrete Systems

2.2  Period-1 to Period-2 Bifurcation Trees

2.3  Higher-Order Period-1 Switching Bifurcations

2.4  Direct Cubic Polynomial Discrete Systems

2.5  Forward Cubic Discrete Systems

2.5.1  Period-Doubled Cubic Discrete Systems

2.5.2  Period-Doubling Renormalization

2.5.3  Period-n Appearing and Period-Doublization

2.5.4  Sampled Period-n Appearing Bifurcations

2.6  Backward Cubic Nonlinear Discrete Systems

2.6.1  Backward Period-2 Cubic Discrete Systems

2.6.2  Backward Period-Doubling Renormalization

2.6.3  Backward Period-n Appearing and Period-Doublization

Reference

3  Quartic Nonlinear Discrete Systems

3.1  Period-1 Appearing Bifurcations

3.2  Period-1 to Period-2 Bifurcation Trees

3.3  Higher-Order Period-1 Quartic Discrete Systems

3.4  Period-1 Switching Bifurcations

3.4.1  Simple Period-1 Switching Bifurcations

3.4.2  Higher-Order Period-1 Switching Bifurcations

3.5  Forward Quartic Discrete Systems

3.5.1  Period-2 Quartic Discrete Systems

3.5.2  Period-Doubling Renormalization

3.5.3  Period-n Appearing and Period-Doublization

3.6  Backward Quartic Discrete Systems

3.6.1  Backward Period-2 Quartic Discrete Systems

3.6.2  Backward Period-Doubling Renormalization

3.6.3  Backward Period-n Appearing and Period-Doublization

Reference

4  (2m)th-Degree Polynomial Discrete Systems

4.1  Global Stability and Bifurcations

4.2  Simple Fixed-Point Bifurcations

4.2.1  Appearing Bifurcations

4.2.2  Switching Bifurcations

4.2.3  Switching-Appearing Bifurcations

4.3  Higher-Order Fixed-Point Bifurcations

4.3.1  Appearing Bifurcations

4.3.2  Switching Bifurcations

4.3.3  Switching-Appearing Bifurcations

4.4  Forward Bifurcation Trees

4.4.1  Period-Doubled (2m)th-Degree Polynomial Discrete Systems

4.4.2  Renormalization and Period-Doubling

4.4.3  Period-n Appearing and Period-Doublization

References

5  (2m+1)th-Degree Polynomial Discrete Systems

5.1  Global Stability and Bifurcations

5.2  Simple Fixed-Point Bifurcations

5.2.1  Appearing Bifurcations

5.2.2  Switching Bifurcations

5.2.3  Switching-Appearing Bifurcations

5.3  Higher-Order Fixed-Point Bifurcations

5.3.1  Higher-Order Fixed-Point Bifurcations

5.3.2  Switching Bifurcations

5.3.3  Switching-Appearing Bifurcations

5.4  Forward Bifurcation Trees

5.4.1  Period-Doubled (2m+1)th-Degree Polynomial Systems

5.4.2  Renormalization and Period-Doubling

5.4.3  Period-n Appearing and Period-Doublization

References

Index

内容摘要

本书是*本关于一维多项式非线性离散系统分岔动力学的专著。本书给出了多项式非线性离散系统分岔的一般条件,全面地讨论了一维多项式离散系统中高阶奇异不动点的出现分岔和切换分岔,系统地分析讨论了倍周期分岔和单调鞍点分岔所产生的周期-1到混沌的分岔树,提出了多项式离散系统的周期-2及全局倍周期重整化方法,并且首次确定了分岔树上周期-n不动点的出现机理和相应的倍周期重整化。读者将在书中看到非线性离散系统中妙趣横生的研究结果。 ? 首先讨论了一维线性离散动力系统不动点的稳定性。 ? 系统地讨论了二次、三次、四次多项式的离散动力系统不动点的稳定性及解的复杂性。 ? 讨论了2m 次多项式和2m 1 次多项式的离散动力系统不动点的稳定性及分岔的复杂性。 ? 展示了其单调和振荡的出现和切换分岔,包括单调和振荡上下鞍点分岔、单调和振荡源分岔、单调和振荡汇分岔。 ? 首次提出了此类多项式离散系统的周期-2及全局倍周期重整化方法。 ? 首次确定了分岔树上周期-n不动点的出现机理。 ? 给出了此类多项式离散系统通向混沌的解析表达式。



   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP