作者范延滨 编
出版社科学出版社
出版时间2011-06
版次1
装帧平装
上书时间2024-12-13
商品详情
- 品相描述:九品
图书标准信息
-
作者
范延滨 编
-
出版社
科学出版社
-
出版时间
2011-06
-
版次
1
-
ISBN
9787030308481
-
定价
38.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
285页
-
字数
440千字
- 【内容简介】
-
由范延滨等编著的本书着力从滤波器组观点阐述小波技术及其应用,重点突出小波理论、算法与滤波器组相统一的思想。
本书共9章,从小波分析的基础(小波概念)、小波空间的分解(多分辨率分析)和小波变换的实现(滤波器组)三个方面对“小波理论、算法与滤波器组”进行阐述。其主要内容包括:信号变换与框架原理,多抽样系统与滤波器组,小波与小波变换,空间分解与多分辨率分析,正交小波与正交滤波器组,双正交小波与双正交滤波器组,小波包与小波包滤波器组,提升小波与提升小波滤波器组,信号奇异性检测与小波变换。
本书可以作为普通高等院校理工科专业高年级本科生和研究生的教材及参考书,也可以作为相关领域工程技术人员的参考书。
- 【作者简介】
-
范延滨,男,1964年2月出生,山东省即墨人,汉族。1985年本科毕业于山东师范大学物理学专业,1988年硕士研究生毕业于山东师范大学量子电子学专业,2001年晋升为青岛大学教授。现任体系结构教研室主任、青岛市计算机学会嵌入式分会秘书长。多年来,主要从事小波应用、嵌入式系统、信号处理等方面的教学与研究工作。已出版教材3部,发表学术论文30余篇,完成科研项目20余项,受到各类奖励10余项。在小波应用方面,主要对小波理论进行了系统的研究,提出了“从小波理论研究一小波算法设计一小波滤波器组实现”的协同学习与应用方案。从2000年至今主要从事基于小波的图像边缘提取与图像分割、基于小波包和提升小波的数字水印技术、基于FPGA的小波算法硬件实现等方面的教学、研究与应用。在嵌入式系统方面,从1990年至今从事MCS-51单片机应用开发,至今已经有20年的教学与研发经历;先后应用过MCS-51、PIC、ARM7、ARM9XScaIe、Cortex-M3等系列嵌入式处理器;应用过μLinux、μc/OS-Ⅱ等嵌入式操作系统;完成了从工业控制到信息家电的多个研发项目。
- 【目录】
-
第1章 信号变换与框架原理 1.1 信号分解 1.1.1 矢量空间与矢量分解 1.1.2 线性空间与距离空间 1.1.3 赋范空间与巴拿赫空间 1.1.4 内积空间与希尔伯特空间 1.1.5 线性算子与线性算子空间 1.1.6 内积空间的信号分解 1.1.7 12(R)空问与12(Z)空间 1.1.8 内积空间的逼近 1.1.9 信号双正交分解 1.2 框架原理 1.2.1 框架的概念 1.2.2 框架算子 1.2.3 对偶框架概念 1.2.4 框架下的采样 1.2.5 框架下的信号分解与重构 1.2.6 里茨基框架 1.2.7 对偶框架的构造 1.3 现代数值分析的总框架第2章 多抽样系统与滤波器组 2.1 多抽样系统 2.1.1 基本关系 2.1.2 引申关系 2.1.3 滤波器的多相表示 2.2 滤波器组 2.2.1 滤波器组的概念 2.2.2 半带滤波器 2.2.3 双通道滤波器组完全重构条件 2.2.4 双通道基本正交镜像滤波器组 2.2.5 双通道共轭正交镜像滤波器组 2.2.6 双通道滤波器组中的制约关系 2.3 二维抽样系统与滤波器组 2.3.1 可分离二维系统抽样与滤波器组 2.3.2 五株型抽样系统 2.3.3 五株型滤波器组 2.3.4 五株型滤波器组的完全重构条件 2.3.5 五株型滤波器组的设计第3章 小波与小波变换 3.1 连续小波与连续小波变换 3.1.1 连续小波 3.1.2 连续小波实例 3.1.3 连续小波变换 3.1.4 连续小波逆变换 3.1.5 连续小波变换的性质 3.1.6 连续小波变换的计算 3.2 离散小波与离散小波变换 3.2.1 离散小波 3.2.2 小波框架 3.2.3 离散小波变换 3.2.4 离散小波逆变换 3.2.5 离散小波变换重建核方程 3.3 二进小波与二进小波变换 3.3.1 二进小波与二进小波变换的概念 3.3.2 二进小波框架与二进小波逆变换 3.3.3 二进小波的性质 3.4 二维小波与二维小波变换 3.4.1 二维小波与二维小波变换的定义 3.4.2 可分离二维小波与二维小波变换 3.4.3 不可分离二维小波与二维小波变换第4章 空间分解与多分辨率分析 4.1 多分辨率分析的概念 4.1.1 多分辨率的含义 4.1.2 理想滤波器组 4.1.3 函数空间的剖分 4.2 尺度空间多分辨率分析 4.2.1 尺度空间多分辨率分析的概念 4.2.2 尺度函数与尺度滤波器 4.2.3 尺度空间的信号分析 4.2.4 尺度多分辨率系统的构造 4.3 小波空间多分辨率分析 4.3.1 小波空问多分辨率分析的概念 4.3.2 小波函数与小波滤波器 4.3.3 小波空间的信号分析 4.3.4 小波多分辨率系统的构造 4.4 多分辨率分析 4.4.1 多分辨率分析的概念 4.4.2 双尺度方程 4.4.3 MRA的性质 4.5 信号的正交分解与重构 4.5.1 马拉特算法 4.5.2 马拉特算法中信号的初始化 4.5.3 马拉特算法中信号的边界延拓 4.5.4 马拉特算法的图形显示算法 4.6 二维可分离多分辨率分析 4.6.1 二维可分离多分辨率的基本概念 4.6.2 二维可分离多分辨率的基本性质 4.6.3 马拉特算法 4.7 多分辨率分析滤波器与滤波器组的关系第5章 正交小波与正交滤波器组 5.1 好小波基 5.1.1 函数正则性与衰减性 5.1.2 小波消失矩与零点阶 5.1.3 小波支集长度与支集区间 5.1.4 小波正则性与零点阶 5.1.5 小波支集长度与消失矩 5.1.6 结论与总结 5.2 正交小波基的构造 5.2.1 由尺度函数φ(t)构造小波函数φ(t) 5.2.2 由尺度滤波器hφ【k】构造尺度函数φ(t)和小波函数φ(t) 5.3 多伯奇斯小波的构造 5.4 西姆小波的构造 5.5 科伊夫小波的构造 5.6 巴得尔一勒马里小波的构造 5.7 由尺度滤波器构造紧支撑正交小波的一般方法 5.8 正交滤波器组下信号的分解与重构 5.8.1 信号逼近 5.8.2 信号滤波第6章 双正交小波与双正交滤波器组 6.1 双正交多分辨率分析 6.1.1 构造一组双正交基 6.1.2 双正交多分辨率分析 6.1.3 双正交多分辨率分析的性质 6.1.4 双正交多分辨率分析下的信号分解与重构 6.2 双正交完全重构滤波器组 6.2.1 双正交完全重构双通道滤波器组 6.2.2 双正交完全重构双通道FIR滤波器组 6.2.3 双正交完全重构对偶里茨基 6.3 双正交马拉特算法与实现 6.4 双正交小波基 6.4.1 双正交小波基的构造 6.4.2 双正交小波基的性质 6.4.3 紧支集双正交小波构造第7章 小波包与小波包滤波器组 7.1 小波包的概念 7.1.1 空间的完整剖分 7.1.2 正交基的分裂 7.1.3 小波包的二叉剖分 7.1.4 小波包的性质 7.2 小波包基 7.2.1 小波包正交基 7.2.2 小波包基的构造 7.2.3 紧支集小波包 7.2.4 双正交小波包 7.3 小波包多分辨率分析 7.3.1 小波包多分辨率分析的概念 7.3.2 小波包多分辨率分析的特性 7.4 小波包最优基的选择 7.4.1 代价函数的概念 7.4.2 最优基的概念 7.4.3 最优基的选择方法 7.4.4 熵最优化法算法 7.4.5 RD最优化法算法 7.4.6 双树最优化法算法 7.5 小波包滤波器组 7.5.1 小波包信号分解 7.5.2 离散小波包基 7.5.3 哈尔小波包与实例第8章 提升小波与提升小波滤波器组 8.1 提升方案的概念 8.2 提升方案的算法 8.3 提升算法滤波器组 8.3.1 提升方案的多相表示 8.3.2 洛朗多项式与欧几里得算法 8.3.3 滤波器提升算法 8.3.4 滤波器的多相分解 8.3.5 整数提升 8.4 常用提升小波第9章 信号奇异性检测与小波变换 9.1 信号奇异性与利普斯奇茨指数 9.2 利普斯奇茨指数与小波变换 9.3 信号奇异性与小波变换 9.4 多尺度微分算子与小波函数 9.5 信号奇异性检测与小波变换模极大值参考文献
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价