数学物理方程季孝达薛兴恒陆英宋立功科学出版社9787030258236
二手书,此书是一本无赠品和附件,套装不全,购买套装请联系客服
¥
14.2
4.3折
¥
33
八五品
仅1件
作者季孝达 薛兴恒 陆英 宋立功
出版社科学出版社
ISBN9787030258236
出版时间2017-12
装帧其他
页数292页
定价33元
货号9787030258236
上书时间2025-01-02
商品详情
- 品相描述:八五品
- 商品描述
-
第二版前言
版前言
第1章 偏微分方程定解问
1.1 三个典型方程的导出
1.1.1 弦的横振动
1.1.2 热传导问
1.1.3 静电场
1.2 定解问及其适定性
1.2.1 通解和特解
1.2.2 定解条件
1.2.3 定解问及其适定性
1.3 一阶线性(拟线性)偏微分方程的通解法和特征线法
1.3.1 两个自变量的一阶线性偏微分方程
1.3.2 n个自变量的一阶线性偏微分方程(n≥2)
1.3.3 一阶拟线性偏微分方程
1.4 波动方程的行波解
1.4.1 一维波动方程的通解和初值问的达朗贝尔(d’Alembert)公式
1.4.2 半直线上的问——延拓法
1.4.3 中心对称的球面波
1.5 二阶线性偏微分方程的分类和标准式
1.5.1 特征方程和特征线
1.5.2 方程的分类、化简和标准形
1.6 叠加原理和齐次化原理
1.6.1 线性叠加原理
1.6.2 齐次化原理(冲量原理)
1
第2章 分离变量法
2.1 两个典型例子
2.1.1 两端固定弦的自由振动
2.1.2 圆柱体稳态温度分布
2.2 一般格式,固有值问
2.2.1 一般格式
2.2.2 固有值问的施图姆一刘维尔(Sturin-Liouville)定理
2.2.3 例
2.3 非齐次问
2.3.1 齐次边界条件下非齐次发展方程的混合问
2.3.2 一般的非齐次混合问
2.3.3 非齐次稳定方程的边值问
2
第3章 特殊函数及其应用
3.1 正交曲线坐标系下的变量分离
3.1.1 Helmholtz方程在直角坐标系下的变量分离及高维Fourier展开
3.1.2 Helmholtz方程在柱坐标系下的变量分离及Bessel方程的导出
3.1.3 Helmholtz方程在球坐标系下的变量分离及Legendre方程的导出
3.2 常微分方程的幂级数解
3.2.1 二阶线性常微分方程的解析理论
3.2.2 Legendre方程的幂级数解及Legendre函数
3.2.3 Bessel方程的广义幂级数解及Bessel函数
3.3 Legendre函数
3.3.1 Legendre多项式的表示和性质
3.3.2 Legendre方程的固有值问及正则奇点情况下的S-L定理
3.3.3 轴对称Laplace方程球面边值问
3.3.4 伴随Legendre方程和伴随Legendre函数
3.3.5 一般情形下Laplace方程球面边值问及球函数
3.4 Bessel函数
3.4.1 Bessel函数的表示和性质
3.4.2 Bessel方程的固有值问
3.4.3 圆柱形区域上的混合问和边值问,虚变量Bessel函数
3.4.4 球Bessel函数及其应用
3.4.5 可以化为Bessel方程的方程
3
第4章 积分变换法
4.1 Fourier变换法
4.1.1 Fourier变换
4.1.2 用Fourier变换求解无界区间上的定解问
4.1.3 Fourier正弦、余弦变换和半无界区间上的定解问
4.1.4 高维问
4.2 Laplace变换法
4.2.1 Laplace变换
4.2.2 用15aplace变换求解发展方程的定解问
4.3 一般积分变换简介
4.3.1 分离变量法和积分变换法
4.3.2 一般积分变换原理和其他积分变换
4
第5章 基本解方法
5.1 δ函数,广义函数简介
5.1.1 δ函数和广义函数
5.1.2 δ函数和广义函数的性质和运算
5.1.3 高维δ函数和广义函数
5.2 Lu=0型方程的基本解
5.2.1 基本解和解的积分表达式
5.2.2 基本解的求法
5.3 边值问的Green函数法
5.3.1 场位方程边值问的Green函数及解的积分公式
5.3.2 Green函数的求法
5.3.3 Helmholtz方程边值问及其Green函数
5.4 初值问的基本解方法
5 4.1 utt=Lu型方程初值问的基本解
5.4.2 utt=Lu型方程初值问的基本解
5.4.3 热传导方程的初值问
5.4.4 波动方程的初值问
5.4.5 混合问的Green函数法
5.5 广义函数
5.5.1 广义函数的概念:
5.5.2 ε(R”),ψ(R”),D(R”)与ε’(Rn),ψ’(R”),D’(Rn)
5.5.3 广义函数和广义函数极限的几个例子
5.5.4 广义函数的局部性质及广义函数的支集
5.5.5 广义函数的某些简单运算
5.5.6 广义函数的导数和对参变数的导数
5.5.7 广义函数的FT和F-1T
5.5.8 广义函数的卷积
5
第6章 微分方程的变分方法
6.1 泛函和泛函极值
6.1.1 泛函和泛函极值
6.1.2 几个例子
6.2 泛函的变分,Euler方程和边界条件
6.2.1 变分法基本引理
6.2.2 一元函数泛函的变分、Euler方程和边界条件
6.2.3 二元函数泛函和多元函数泛函的情况
6.2.4 混合积分型泛函的情况
6.2.5 两个一元函数(y,(x),z(x))的泛函的情况
6.2.6 泛函中包含二阶导数的情况
6.2.7 两个二元函数泛函的情况
6.2.8 Hamilton原理和例子
6.2.9 活动区间问和横截条件
6.3 变分问的直接法及微分方程的变分方法
6.3.1 变分问的直接法
6.3.2 微分方程的变分方法
6.3.3 微分方程的广义解
6.4 泛函的条件极值
6.4.1 条件极值
6.4.2 等周问
6.4.3 等周问和自共轭微分方程的固有值问
6
参答案
参文献
— 没有更多了 —
以下为对购买帮助不大的评价