• 贝叶斯方法 概率编程与贝叶斯推断
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

贝叶斯方法 概率编程与贝叶斯推断

塑封消毒 正版书 套装书为一本

16.89 2.9折 59 九品

仅1件

北京丰台
认证卖家担保交易快速发货售后保障

作者[加拿大]Cameron Davidson-Pilon(卡梅隆·戴维森-皮隆) 著;辛愿、钟黎、欧阳婷 译;余凯、岳亚丁 校

出版社人民邮电出版社

出版时间2016-12

版次01

装帧平装

货号U

上书时间2024-12-12

福宝书店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
商品描述
二手书不缺页不掉页不影响阅读,部分有笔记划线,没有光盘书签书腰等赠品,套装书为一本。拍下即代表接受该情况描述,不再另做通知,也不接受另外留言备注关于品相的要求。
图书标准信息
  • 作者 [加拿大]Cameron Davidson-Pilon(卡梅隆·戴维森-皮隆) 著;辛愿、钟黎、欧阳婷 译;余凯、岳亚丁 校
  • 出版社 人民邮电出版社
  • 出版时间 2016-12
  • 版次 01
  • ISBN 9787115438805
  • 定价 59.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 214页
  • 字数 247千字
  • 正文语种 简体中文
  • 原版书名 Bayesian Methods for Hackers Probabilistic Programming and Bayesian Inference
【内容简介】
本书基于PyMC语言以及一系列常用的Python数据分析框架,如NumPy、SciPy和Matplotlib,通过概率编程的方式,讲解了贝叶斯推断的原理和实现方法。该方法常常可以在避免引入大量数学分析的前提下,有效地解决问题。书中使用的案例往往是工作中遇到的实际问题,有趣并且实用。作者的阐述也尽量避免冗长的数学分析,而让读者可以动手解决一个个的具体问题。通过对本书的学习,读者可以对贝叶斯思维、概率编程有较为深入的了解,为将来从事机器学习、数据分析相关的工作打下基础。本书适用于机器学习、贝叶斯推断、概率编程等相关领域的从业者和爱好者,也适合普通开发人员了解贝叶斯统计而使用。
【作者简介】
Cameron Davidson-Pilon,接触过数学在多个领域的应用——从基因和疾病的动态演化,到金融价格的随机模型。他对于开源社区主要的贡献包括这本书以及lifelines项目。Cameron成长于加拿大的安大略省圭尔夫市,而就读于滑铁卢大学以及莫斯科独立大学。如今他住在安大略省渥太华市,并在电商领军者Shopify工作。

辛愿,浙江大学硕士毕业,腾讯公司基础研究高级工程师,舆情系统开发经理。曾在百度从事推荐系统、用户画像、数据采集等相关研究工作,拥有多项专利,组织过上海大数据技术沙龙。目前专注于文本挖掘、舆情分析、智能聊天机器人等相关领域。

钟黎,腾讯公司研究员。曾在中国科学院、微软亚洲研究院、IBM研究院(新加坡)从事图像处理、语音处理、机器学习等相关研究工作,拥有多项专利,目前聚焦在自然语言处理、深度学习和人工智能等相关领域。

欧阳婷,华南理工大学硕士毕业,腾讯公司后台策略工程师。在电信、互联网行业参与过推荐系统、资源优化、KPI预测、用户画像等相关项目,拥有多项专利,目前聚焦在欺诈检测、时序分析、业务安全等相关领域。

余凯博士,地平线机器人技术创始人、CEO,国际杰出机器学习专家,中组部国家“千人计划”专家,中国人工智能学会副秘书长。余博士是前百度研究院执行院长,创建了百度深度学习研究院。他在百度所领导的团队在广告变现、搜索排序、语音识别、计算机视觉等领域做出杰出贡献,创纪录地连续三次获得公司高荣誉——“百度奖”。他还创建了中国公司自动驾驶项目,后发展为百度自动驾驶事业部。

岳亚丁博士,腾讯公司专家研究员,腾讯技术职级评委会基础研究岗位的负责委员。岳博士拥有19年在金融、电信、互联网行业的数据挖掘经验,主导或参与过用户画像、在线广告、推荐系统、CRM、欺诈检测、KPI预测等多种项目。他曾在微软(加拿大)从事行为定向广告的模型研发,另有11年的工程结构、海洋水文气象的力学研究及应用的工作经历。
【目录】
第1章 贝叶斯推断的哲学 1
1.1 引言 1
1.1.1 贝叶斯思维 1
1.1.2 贝叶斯推断在实践中的运用 3
1.1.3 频率派的模型是错误的吗? 4
1.1.4 关于大数据 4
1.2 我们的贝叶斯框架 5
1.2.1 不得不讲的实例:抛硬币 5
1.2.2 实例:图书管理员还是农民 6
1.3 概率分布 8
1.3.1 离散情况 9
1.3.2 连续情况 10
1.3.3 什么是 12
1.4 使用计算机执行贝叶斯推断 12
1.4.1 实例:从短信数据推断行为 12
1.4.2 介绍我们的第一板斧:PyMC 14
1.4.3 说明 18
1.4.4 后验样本到底有什么用? 18
1.5 结论 20
1.6 补充说明 20
1.6.1 从统计学上确定两个l值是否真的不一样 20
1.6.2 扩充至两个转折点 22
1.7 习题 24
1.8 答案 24
第2章 进一步了解PyMC 27
2.1 引言 27
2.1.1 父变量与子变量的关系 27
2.1.2 PyMC变量 28
2.1.3 在模型中加入观测值 31
2.1.4 最后…… 33
2.2 建模方法 33
2.2.1 同样的故事,不同的结局 35
2.2.2 实例:贝叶斯A/B测试 38
2.2.3 一个简单的场景 38
2.2.4 A和B一起 41
2.2.5 实例:一种人类谎言的算法 45
2.2.6 二项分布 45
2.2.7 实例:学生作弊 46
2.2.8 另一种PyMC模型 50
2.2.9 更多的PyMC技巧 51
2.2.10 实例:挑战者号事故 52
2.2.11 正态分布 55
2.2.12 挑战者号事故当天发生了什么? 61
2.3 我们的模型适用吗? 61
2.4 结论 68
2.5 补充说明 68
2.6 习题 69
2.7 答案 69
第3章 打开MCMC的黑盒子 71
3.1 贝叶斯景象图 71
3.1.1 使用MCMC来探索景象图 77
3.1.2 MCMC算法的实现 78
3.1.3 后验的其他近似解法 79
3.1.4 实例:使用混合模型进行无监督聚类 79
3.1.5 不要混淆不同的后验样本 88
3.1.6 使用MAP来改进收敛性 91
3.2 收敛的判断 92
3.2.1 自相关 92
3.2.2 稀释 95
3.2.3 pymc.Matplot.plot() 97
3.3 MCMC的一些秘诀 98
3.3.1 聪明的初始值 98
3.3.2 先验 99
3.3.3 统计计算的无名定理 99
3.4 结论 99
第4章 从未言明的最伟大定理 101
4.1 引言 101
4.2 大数定律 101
4.2.1 直觉 101
4.2.2 实例:泊松随机变量的收敛 102
4.2.3 如何计算Var(Z) 106
4.2.4 期望和概率 106
4.2.5 所有这些与贝叶斯统计有什么关系呢 107
4.3 小数据的无序性 107
4.3.1 实例:地理数据聚合 107
4.3.2 实例:Kaggle的美国人口普查反馈比例预测比赛 109
4.3.3 实例:如何对Reddit网站上的评论进行排序 111
4.3.4 排序! 115
4.3.5 但是这样做的实时性太差了 117
4.3.6 推广到评星系统 122
4.4 结论 122
4.5 补充说明 122
4.6 习题 123
4.7 答案 124
第5章 失去一只手臂还是一条腿 127
5.1 引言 127
5.2 损失函数 127
5.2.1 现实世界中的损失函数 129
5.2.2 实例:优化“价格竞猜”游戏的展品出价 130
5.3 机器学习中的贝叶斯方法 138
5.3.1 实例:金融预测 139
5.3.2 实例:Kaggle观测暗世界 大赛 144
5.3.3 数据 145
5.3.4 先验 146
5.3.5 训练和PyMC实现 147
5.4 结论 156
第6章 弄清楚先验 157
6.1 引言 157
6.2 主观与客观先验 157
6.2.1 客观先验 157
6.2.2 主观先验 158
6.2.3 决策,决策…… 159
6.2.4 经验贝叶斯 160
6.3 需要知道的有用的先验 161
6.3.1 Gamma分布 161
6.3.2 威沙特分布 162
6.3.3 Beta分布 163
6.4 实例:贝叶斯多臂老虎机 164
6.4.1 应用 165
6.4.2 一个解决方案 165
6.4.3 好坏衡量标准 169
6.4.4 扩展算法 173
6.5 从领域专家处获得先验分布 176
6.5.1 试验轮盘赌法 176
6.5.2 实例:股票收益 177
6.5.3 对于威沙特分布的专业提示 184
6.6 共轭先验 185
6.7 杰弗里斯先验 185
6.8 当N增加时对先验的影响 187
6.9 结论 189
6.10 补充说明 190
6.10.1 带惩罚的线性回归的贝叶斯视角 190
6.10.2 选择退化的先验 192
第7章 贝叶斯A/B测试 195
7.1 引言 195
7.2 转化率测试的简单重述 195
7.3 增加一个线性损失函数 198
7.3.1 收入期望的分析 198
7.3.2 延伸到A/B测试 202
7.4 超越转化率:t检验 204
7.4.1 t检验的设定 204
7.5 增幅的估计 207
7.5.1 创建点估计 210
7.6 结论 211
术语表 213
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP