• 神经网络与深度学习
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

神经网络与深度学习

塑封消毒 正版 套装书为一本

17.92 3.0折 59 九品

仅1件

北京丰台
认证卖家担保交易快速发货售后保障

作者吴岸城 著

出版社电子工业出版社

出版时间2016-07

版次1

装帧平装

货号砖家2

上书时间2024-11-15

福宝书店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
商品描述
二手书不缺页不掉页不影响阅读,部分有笔记划线,没有光盘书签书腰等赠品,套装书为单本。拍下即代表接受该情况描述,不再另做通知,也不接受另外留言备注关于品相的要求。
图书标准信息
  • 作者 吴岸城 著
  • 出版社 电子工业出版社
  • 出版时间 2016-07
  • 版次 1
  • ISBN 9787121288692
  • 定价 59.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 232页
  • 字数 99999千字
  • 正文语种 简体中文
【内容简介】

《神经网络与深度学习》是一本介绍神经网络和深度学习算法基本原理及相关实例的书籍,它不是教科书,作者已尽量把公式减少到极少,以适应绝大部分人的阅读基础和知识储备。《神经网络与深度学习》涵盖了神经网络的研究历史、基础原理、深度学习中的自编码器、深度信念网络、卷积神经网络等,这些算法都已在很多行业发挥了价值。

 

《神经网络与深度学习》适合有志于从事深度学习行业的,或想了解深度学习到底是什么的,或是有一定机器学习基础的朋友阅读。

【作者简介】
吴岸城,致力于深度学习在文本、图像领域的应用。 曾在中兴通讯、亚信联创担任研发经理、技术经理等职务,现任菱歌科技首席算法科学家一职。…
【目录】

第0章 写在前面:神经网络的历史

第1章 神经网络是个什么东西

1.1 买橙子和机器学习

1.1.1 规则列表

1.1.2 机器学习

1.2 怎么定义神经网络

1.3 先来看看大脑如何学习

1.3.1 信息输入

1.3.2 模式加工

1.3.3 动作输出

1.4 生物意义上的神经元

1.4.1 神经元是如何工作的

1.4.2 组成神经网络

1.5 大脑如何解决现实生活中的分类问题

第2章 构造神经网络

2.1 构造一个神经元

2.2 感知机

2.3 感知机的学习

2.4 用代码实现一个感知机

2.4.1 Neuroph:一个基于Java的神经网络框架

2.4.2 代码实现感知机

2.4.3 感知机学习一个简单逻辑运算

2.4.4 XOR问题

2.5 构造一个神经网络

2.5.1 线性不可分

2.5.2 解决XOR问题(解决线性不可分)

2.5.3 XOR问题的代码实现

2.6 解决一些实际问题

2.6.1 识别动物

2.6.2 我是预测大师

第3章 深度学习是个什么东西

3.1 机器学习

3.2 特征

3.2.1 特征粒度

3.2.2 提取浅层特征

3.2.3 结构性特征

3.3 浅层学习和深度学习

3.4 深度学习和神经网络

3.5 如何训练神经网络

3.5.1 BP算法:神经网络训练

3.5.2 BP算法的问题

3.6 总结深度学习及训练过程

第4章 深度学习的常用方法

4.1 模拟大脑的学习和重构

4.1.1 灰度图像

4.1.2 流行感冒

4.1.3 看看如何编解码

4.1.4 如何训练

4.1.5 有监督微调

4.2 快速感知:稀疏编码(Sparse Coding)

4.3 栈式自编码器

4.4 解决概率分布问题:限制波尔兹曼机

4.4.1 生成模型和概率模型

4.4.2 能量模型

4.4.3 RBM的基本概念

4.4.4 再看流行感冒的例子

4.5 DBN

4.6 卷积神经网络

4.6.1 卷积神经网络的结构

4.6.2 关于参数减少与权值共享

4.6.3 举个典型的例子:图片内容识别

4.7 不会忘记你:循环神经网络

4.7.1 什么是RNN

4.7.2 LSTM网络

4.7.3 LSTM变体

4.7.4 结论

4.8 你是我的眼:利用稀疏编码器找图像的基本单位

4.9 你是我的眼(续)

4.10 使用深度信念网搞定花分类

第5章 深度学习的胜利:AlphaGo

5.1 AI如何玩棋类游戏

5.2 围棋的复杂性

5.3 AlphaGo的主要原理

5.3.1 策略网络

5.3.2 MCTS拯救了围棋算法

5.3.3 强化学习:“周伯通,左右互搏”

5.3.4 估值网络

5.3.5 将所有组合到一起:树搜索

5.3.6 AlphaGo有多好

5.3.7 总结

5.4 重要的技术进步

5.5 一些可以改进的地方

5.6 未来

第6章 两个重要的概念

6.1 迁移学习

6.2 概率图模型

6.2.1 贝叶斯的网络结构

6.2.2 概率图分类

6.2.3 如何应用PGM

第7章 杂项

7.1 如何为不同类型的问题选择模型

7.2 我们如何学习“深度学习”

7.3 如何理解机器学习和深度学习的差异

7.4 大规模学习(Large Scale Learning)和并行计算

7.5 如果喜欢应用领域,可以考虑以下几种应用

7.6 类脑:人工智能的目标

参考文献

术语

点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP