• 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
  • 交通流数据清洗与状态辨识及优化控制关键理论方法
21年品牌 40万+商家 超1.5亿件商品

交通流数据清洗与状态辨识及优化控制关键理论方法

30 4.0折 75 九品

仅1件

湖南怀化
认证卖家担保交易快速发货售后保障

作者王晓原、张敬磊、杨新月 著

出版社科学出版社

出版时间2015-07

版次1

装帧平装

货号4DF

上书时间2024-09-27

三超旧书屋

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
有少量划线,如图所示,介意勿拍
图书标准信息
  • 作者 王晓原、张敬磊、杨新月 著
  • 出版社 科学出版社
  • 出版时间 2015-07
  • 版次 1
  • ISBN 9787030295781
  • 定价 75.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 231页
  • 字数 302千字
  • 正文语种 简体中文
  • 丛书 道路交通运输规划与管理丛书
【内容简介】
  《交通流数据清洗与状态辨识及优化控制关键理论方法》是作者在交通流辨识及优化控制领域近十年研究成果的系统总结。在全面总结国内外交通流辨识及优化控制研究现状及发展趋势的基础上,《交通流数据清洗与状态辨识及优化控制关键理论方法》着重介绍作者在这一领域的研究成果,主要包括交通流数据清洗关键理论及方法、交通流状态辨识关键理论及方法、交通流优化控制关键理论及方法。
  《交通流数据清洗与状态辨识及优化控制关键理论方法》可为交通运输工程、控制科学与工程、系统科学与工程、车辆工程以及智能科学等多学科交叉领域从事交通流状态辨识及优化控制研究的相关专业技术人员提供参考,也可作为相关专业研究生和高年级本科生教材。
【目录】
前言
1 绪论
1.1 its发展背景
1.2 国内外its研究历史与发展现状
1.2.1 国外its研究历史与发展现状
1.2.2 我国its研究历史与发展现状
1.2.3 its主要功能子系统
1.3 交通流数据清洗与状态辨识及优化控制概述
1.4 本书主要内容
参考文献

第一篇 交通流数据清洗关键理论及方法
2 交通流数据清洗概述
2.1 研究背景
2.2 研究的必要性及数据清洗
2.2.1 必要性
2.2.2 交通流数据清洗的主要内容
2.3 国内外相关研究状况
2.3.1 数据清洗研究状况
2.3.2 交通流数据清洗研究状况
2.4 本篇主要研究内容
2.5 本章小结
参考文献
3 交通流丢失数据补齐算法
3.1 丢失数据的分析
3.2 基于粗集理论的交通流丢失数据补齐算法
3.2.1 粗集理论
3.2.2 roustida算法流程
3.2.3 模型应用与结果分析
3.2.4 结论
3.3 基于最小二乘支持向量机的交通流丢失数据补齐算法
3.3.1 支持向量机和最小二乘支持向量机的原理
3.3.2 交通流丢失数据补齐模型及仿真
3.3.3 结论
3.4 本章小结
参考文献
4 交通流错误数据判别和修正算法
4.1 错误数据判别模型
4.1.1 孤立点检测算法
4.1.2 边界检测算法
4.1.3 阈值理论与交通流理论的组合检测算法
4.2 错误数据修正模型
4.2.1 灰色gm(1,1)模型
4.2.2 错误数据修正模型
4.3 应用实例
4.3.1 数据来源
4.3.2 算法流程
4.3.3 模型应用
4.3.4 结果分析
4.4 结论
4.5 本章小结
参考文献
5 交通流冗余数据约简算法
5.1 冗余数据识别和约简方法
5.1.1 基于等级分组法的冗余数据识别方法
5.1.2 冗余数据的约简方法
5.2 应用实例
5.2.1 数据来源
5.2.2 算法流程
5.2.3 模型应用
5.2.4 结果分析
5.3 结论
5.4 本章小结
参考文献
6 本篇内容总结及其展望
6.1 总结
6.2 未来的研究方向

第二篇 交通流状态辨识关键理论及方法
7 交通流状态辨识系统框架
7.1 交通流状态辨识系统框架结构
7.2 系统框架的主要组成部分
7.2.1 交通状态判别子系统
7.2.2 动态交通信息采集子系统
7.2.3 交通流数据清洗子系统
7.2.4 交通流控制子系统
7.2.5 调度子系统
7.2.6 交通信息发布子系统
7.2.7 事件数据管理子系统
7.2.8 通信子系统
7.3 本篇主要研究内容与方法
7.4 本章小结
参考文献
8 交通流状态预辨识方法
8.1 交通流预测方法简介
8.1.1 基于统计理论的模型
8.1.2 基于非线性预测理论的模型
8.1.3 基于神经网络理论的模型
8.1.4 基于动态分配理论的模型
8.1.5 基于微观交通仿真的模型
8.2 基于非参数回归样条的交通流短时预测方法
8.2.1 非参数回归
8.2.2 非参数回归样条拟合方法
8.2.3 非参数回归样条拟合方法在交通流短时预测中的应用
8.3 基于投影寻踪自回归的短时交通流预测方法
8.3.1 投影寻踪技术
8.3.2 pp自回归模型[ppar(k)]
8.3.3 交通流ppar回归预测
8.3.4 结论
8.4 本章小结
参考文献
9 交通流量变检测方法
9.1 概述
9.2 指数分布概率变点模型研究
9.2.1 指数分布参数的变点
9.2.2 均值变点搜索方法
9.2.3 模型应用与结果分析
9.3 二项分布概率变点模型研究
9.3.1 累次计数法
9.3.2 模型应用与结果分析
9.4 本章小结
参考文献
10 交通流质变检测方法
10.1 交通事件检测方法简介
10.1.1 交通事件
10.1.2 主要事件检测算法及评价指标
10.2 交通流突变分析的变点统计方法
10.2.1 概述
10.2.2 交通流突变分析的最小二乘法
10.2.3 交通流突变分析的局部比较法
10.3 基于多分辨分析的交通事件自动检测方法
10.3.1 多分辨分析mallat算法
10.3.2 小波滤波器及mallat算法的具体实现
10.3.3 多分辨分析在交通事件自动检测中的应用
10.4 本章小结
参考文献
11 信息融合技术在交通流状态实时辨识中的应用
11.1 信息融合及交通信息融合简介
11.1.1 信息融合
11.1.2 信息融合的层次级别
11.1.3 信息融合方法
11.2 基于支持向量机的交通信息融合方法研究
11.2.1 支持向量机简介
11.2.2 基于svm的信息融合方法在交通流状态实时辨识中的应用
11.2.3 结论
11.3 基于遗传算法的交通信息模糊融合方法
11.3.1 模糊控制和遗传算法
11.3.2 基于遗传算法的信息模糊融合方法在交通流状态实时辨识中的应用
11.4 本章小结
参考文献
12 本篇内容总结及其展望

第三篇 交通流优化控制关键理论及方法
13 交通流优化控制
13.1 研究的背景和意义
13.2 dta问题
13.2.1 国外研究现状
13.2.2 我国研究现状
13.3 最短路径问题
13.4 本篇主要内容
参考文献
14 蚁群算法概述
14.1 算法的基本理论
14.1.1 基本原理
14.1.2 基本模型
14.1.3 理论基础
14.1.4 算法框架
14.1.5 算法的特点
14.2 算法的研究进展
14.2.1 理论研究
14.2.2 应用研究
14.2.3 我国研究情况
14.3 本章小结
参考文献
15 基于自适应蚁群算法的交通网络中最短路径搜索方法
15.1 交通网络中最短路径问题
15.1.1 交通网络的表示
15.1.2 最短路径问题的描述
15.2 用自适应蚁群算法求解交通网络中最短路径问题
15.2.1 寻优思路
15.2.2 算法设计
15.2.3 算法的具体实现步骤
15.2.4 算法流程图
15.3 仿真实验
15.4 本章小结
参考文献
16 基于混沌蚁群算法的动态用户最优配流方法
16.1 基本问题
16.1.1 交通分配理论概述
16.1.2 dta特征
16.1.3 动态交通网络配流原则
16.1.4 动态交通网络约束条件
16.2 离散型动态用户最优配流模型
16.3 dta方法
16.3.1 混沌蚁群算法
16.3.2 用caco求解离散型动态用户最优配流问题
16.4 仿真实验
16.5 本章小结
参考文献
17 本篇内容总结及其展望
17.1 总结
17.2 研究展望

附录
附录a 王晓原主持的科研项目
附录b 作者的代表性论著
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

有少量划线,如图所示,介意勿拍
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP