20世纪20年代,Springer出版了Grundlehren der Mathematicschen Wissenschaften专著系列丛书,各卷有不同作者撰写,内容独立成册,其中有些高等经典教材广受好评。为了满足不断涌现的新一代研究生和科研人员的需求,Springer将这类图书重新出版,形成了新的系列“经典数学”丛书(Classics in Mathematics),《二次型导论》正是选自该丛书,本书虽然不是一部内容浅显的教科书,但二次型理论阐述清晰明了,独具特色。本书作者是美国诺特丹大学(University of Notre Dame)数学系教授。
【作者简介】
本书作者O.Timothy O'Meara (O. T. 欧米拉,美国) 是美国诺特丹大学(University of Notre Dame)数学系教授。
【目录】
prerequisites and notation
part one arithmetic theory of fields
chapter i.valuated fields
11.valuations
12.arehimedean valuations
13.non-archimedean valuations
14.prolongation of a plete valuation to a finite extension
15.prolongat/on of any valuation to a finite separable extension ..
16.discrete valuations
chapter ii.dedekind theory of ideals
21.dedekind aoms for s
22.ideal theory
23.extens/on fields
chapter iii.fields of number theory
31.rational global fields
32.local fields
33.global fields
part two abstract theory of quadratic forms
chapter iv.quadratic forms and the o~ogonal group
41.forms, matrices and spaces
42.quadratic spaces
43.spe subgrou of o.(v)
chapter v.the algebras of quadratic forms
sl.tensor products
52.wedderburns theorem on central simple algebras
53.exten the field of scalars
54, the clifford algebra
55.the spinor norm
56.spe subgrou of o,(v)
57.quaternion algebras
58.the hasse algebra
part three arithmetic theory of quadratic forms over fields
chapter vi.the equivalence of quadratic forms
61.plete archimedean fields
62.finite fields
63.local fields
64.global notation
68.squares and norms in giobal fields
66.quadratic forms over global fields
chapter vii.hilberts reciprocity law
71.proof of the reciprocity law
72.estence of forms with prescribed local behavior
73.the quadratic reciprocity law
part four arithmetic theory of ~uadratie forms over rings
chapter viii.quadratic forms over dedekind domains
81.abstract lattices
82.lattices in quadratic spaces
chapter ix.integral theory of quadratic forms over local fields
91.generalities
92.classification of lattices over non-dyadic fields
以下为对购买帮助不大的评价