• 代数曲线几何(第2卷 第2分册)
  • 代数曲线几何(第2卷 第2分册)
  • 代数曲线几何(第2卷 第2分册)
21年品牌 40万+商家 超1.5亿件商品

代数曲线几何(第2卷 第2分册)

40 4.0折 99 九品

仅1件

河北廊坊
认证卖家担保交易快速发货售后保障

作者[意]阿尔巴雷洛 著

出版社世界图书出版公司

出版时间2014-08

版次1

装帧平装

货号1架1排右1-5

上书时间2024-09-26

慧慧书屋

六年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [意]阿尔巴雷洛 著
  • 出版社 世界图书出版公司
  • 出版时间 2014-08
  • 版次 1
  • ISBN 9787510077777
  • 定价 99.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 963页
  • 正文语种 英语
【内容简介】
  Thisvolumeisdevotedtothefoundationsofthetheoryofmoduliofalgebraiccurvesdefinedoverthecomplexnumbers.Thefirstvolumewasalmostexclusivelyconcernedwiththegeometryonafixed,smoothcurve.Atthetimeitwaspublished,thelocaldeformationtheoryofasmoothcurvewaswellunderstood,butthestudyofthegeometryofglobalmoduliwasinitsearlystages.Thisstudyhassinceundergoneexplosivedevelopmentandcontinuestodoso.Therearetworeasonsforthis;onepredictableatthetimeofthefirstvolume,theothernot.
  Thepredictableonewastheintrinsicalgebro-geometricinterestinthemoduliofcurves;thishascertainlyturnedouttobethecase.Theotheristheexternalinfluencefromphysics.Becauseofthisconfluence,thesubjecthasdevelopedinwaysthatareincrediblyricherthancouldhavebeenimaginedatthetimeofwritingofVolumeI.
  Whenthisvolume,GACII,wasplanneditwasenvisionedthatthecen-terpiecewouldbethestudyoflinearseriesonageneralorvariablecurve,culminatinginaproofofthePetriconjecture.Thisisstillanimportantpartofthepresentvolume,butitisnotthecentralaspect.Rather,themainpurposeofthebookistoprovidecomprehensiveanddetailedfoundationsforthetheoryofthemoduliofalgebraiccurves.Inaddition,wefeelthataveryimportant,perhapsdistinguishing,aspectofGACIIistheblendingofthemultipleperspectives-algebro-geometric,complex-analytic,topological,andcombinatorial-thatareusedforthestudyofthemoduliofcurves.
【目录】
GuidefortheReader
ListofSymbols

ChapterⅨ.TheHilbertScheme
1.Introduction
2.TheideaoftheHilbertscheme
3.Flatness
4.ConstructionoftheHilbertscheme
5.Thecharacteristicsystem
6.Mumford'sexample
7.VariantsoftheHilbertscheme
8.Tangentspacecomputations
9.Cnfamiliesofprojectivemanifolds
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅩ.Nodalcurves
1.Introduction
2.Elementarytheoryofnodalcurves
3.Stablecurves
4.Stablereduction
5.Isomorphismsoffamiliesofstablecurves
6.Thestablemodel,contraction,andprojection
7.Clutching
8.Stabilization
9.VanishingcyclesandthePicard-Lefschetztransformation
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅪ.Elementarydeformationtheoryandsomeapplications
1.Introduction
2.Deformationsofmanifolds
3.Deformationsofnodalcurves
4.TheconceptofKuranishifamily.
5.TheHilbertschemeofv-canonicalcurves
6.ConstructionofKuranishifamilies
7.TheKuranishifamilyandcontinuousdeformations
8.TheperiodmapandthelocalTorellitheorem
9.CurvatureoftheHodgebundles
10.Deformationsofsymmetricproducts
11.Bibliographicalnotesandfurtherreading

ChapterⅩⅡ.Themodulispaceofstablecurves
1.Introduction
2.Constructionof'modulispaceasananalvticSDace
3.Modulispacesasalgebraicspaces
4.Themodulispaceofcurvesasanorbifold
5.Themodulispaceofcurvesasastack,I.
6.heclassicaltheoryofdescentforquasi-coherentsheaves
7.Themodulispaceofcurvesasastack,Ⅱ
8.Deligne-Mumfordstacks
9.Backtoalgebraicspaces
10.Theuniversalcurve,projectionsandclutchings
11.Bibliographicalnotesandfurtherreading
12.Exercises

ChapterⅩⅢ.Linebundlesonmoduli
1.Introduction
2.Linebundlesonthemodulistackofstablecurves
3.Thetangentbundletomoduliandrelatedconstructions
4.ThedeterminantofthecohomologyandsomeaDDlications
5.TheDelignepairing
6.ThePicardgroupofmodulispace
7.Mumford'sformula
8.ThePicardgroupofthehyperellipticlocus
9.Bibliographicalnotesandfurtherreading

ChapterⅩⅣ.Projectivityofthemodulispaceofstable
1.Introduction
2.Alittleinvarianttheory
3.Theinvariant-theoreticstabilityoflinearlystablesmoothcurves
4.Numericalinequalitiesforfamiliesofstablecurves
5.Projectivityofmodulispaces
6.Bibliographicalnotesandfurtherreading

ChapterⅩⅤ.TheTeichmullerpointofview
1.Introduction
2.Teichmullerspaceandthemappingclassgroup
3.Alittlesurfacetopology
4.QuadraticdifferentialsandTeichmullerdeformations
5.Thegeometryassociatedtoaquadraticdifferential
6.TheproofofTeichmuller'suniquenesstheorem
7.Simpleconnectednessofthemodulistackofstablecurves
8.GoingtotheboundaryofTeichmullerspace
9.Bibliographicalnotesandfurtherreading
10.Exercises

ChapterⅩⅥ.SmoothGaloiscoversofmodulispaces
1.Introduction
2.Levelstructuresonsmoothcurves
3.Automorphismsofstablecurves
4.Compactifyingmoduliofcurveswithlevelstructure,afirstattempt
5.AdmissibleG-covers
6.Automorphismsofadmissiblecovers
7.SmoothcoversofMq
8.Totallyunimodularlattices
9.SmoothcoversofMg,n
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅩⅦ.Cyclesinthemodulispacesofstablecurves
1.Introduction
2.Algebraiccyclesonquotientsbyfinitegroups
3.Tautologicalclassesonmodulispacesofcurves
4.Tautologicalrelationsandthetautologicalring
5.Mumford'srelationsfortheHodgeclasses
6.Furtherconsiderationsoncyclesonmodulispaces
7.TheChowringofMO,P
8.Bibliographicalnotesandfurtherreading
9.Exercises

ChapterⅩⅧ.Cellulardecompositionofmodulispaces
1.Introduction
2.Thearcsystemcomplex
3.Ribbongraphs
4.TheideabehindthecellulardecompositionofMg,n
5.Uniformization
6.Hyperbolicgeometry
7.Thehyperbolicspineandthedefinitionofψ
8.TheequivariantcellulardecompositionofTeichmullerspace
9.Stableribbongraphs
10.ExtendingthecellulardecompositiontoapartialcompactificationofTeichmullerspace
11.Thecontinuityofψ
12.Oddsandends
13.Bibliographicalnotesandfurtherreading

ChapterⅪⅩ.Firstconsequencesofthecellulardecomposition
1.Introduction
2.ThevanishingtheoremsfortherationalhomologyofMg,p
3.ComparingthecohomologyofMg,ntotheoneofitsboundarystrata
4.ThesecondrationalcohomologygroupofMg,n
5.AquickoverviewofthestablerationalcohomologyofMg,nandthecomputationofH1(Mg,n)andH2(Mg.n)
6.Acloserlookattheorbicelldecompositionofmodulispaces
7.Combinatorialexpressionfortheclassesψi
8.Avolumecomputation
9.Bibliographicalnotesandfurtherreading
10.Exercises

ChapterⅩⅩ.Intersectiontheoryoftautologicalclasses
1.Introduction
2.Witten'sgeneratingseries
3.VirasorooperatorsandtheKdVhierarchy
4.Thecombinatorialidentity
5.Feynmandiagramsandmatrixmodels
6.Kontsevich'smatrixmodelandtheeauationL2Z=0
7.Anonvanishingtheorem
8.AbriefreviewofequivariantcohomologyandthevirtualEuler-Poincarecharacteristic
9.ThevirtualEuler-PoincarecharacteristicofMg,n
10.AveryquicktourofGromov-Witteninvariants
11.Bibliographicalnotesandfurtherreading
12.Exercises

ChapterⅩⅪ.Brill-Noethertheoryonamovingcurve
1.Introduction
2.TherelativePicardvariety
3.Brill-Noethervarietiesonmovingcurves
4.Looijenga'svanishingtheorem
5.TheZariskitangentspacestotheBrill-Noethervarieties
6.Theμ1homomorphism
7.Lazarsfeld'sproofofPetri'sconjecture
8.ThenormalbundleandHorikawa'stheory
9.Ramification
10.Planecurves
11.TheHurwitzschemeanditsirreducibility
12.Planecurvesandg1d's
13.Unirationalityresults
14.Bibliographicalnotesandfurtherreading
15.Exercises
Bibliography
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP