基于机器学习的数据分析方法
¥
52.35
5.9折
¥
89
全新
库存3件
作者苏美红
出版社化学工业出版社
出版时间2024-03
版次1
装帧其他
货号604 11-15
上书时间2024-11-15
商品详情
- 品相描述:全新
图书标准信息
-
作者
苏美红
-
出版社
化学工业出版社
-
出版时间
2024-03
-
版次
1
-
ISBN
9787122439895
-
定价
89.00元
-
装帧
其他
-
开本
16开
-
页数
144页
-
字数
153千字
- 【内容简介】
-
作为人工智能的核心技术,机器学习在数据分析中具有举足轻重的地位。本书在介绍机器学习相关知识的基础上,主要介绍了如何对有噪声的数据进行鲁棒回归分析。全书共6章,除第1章外,各章对异常点或重尾分布数据中的具体问题进行了详细分析与建模,所涉及的问题包括权值选择问题、变量相关性问题以及网络数据问题等。
本书对于构建具有鲁棒性的机器学习模型具有很好的参考性,适用于含噪声的数据分析与应用,可供数据分析、人工智能等相关专业师生及行业技术人员参考阅读。
- 【作者简介】
-
无
- 【目录】
-
第1章 机器学习基础 001
1.1 机器学习及基本概念 002
1.1.1 什么是机器学习 002
1.1.2 机器学习中的一些基本概念 003
1.2 机器学习三要素 005
1.2.1 模型 005
1.2.2 策略 006
1.2.3 算法 009
1.3 机器学习分类 009
1.3.1 监督学习 010
1.3.2 无监督学习 013
1.3.3 半监督学习 013
1.3.4 强化学习 013
1.4 回归模型发展现状 014
1.4.1 线性回归 014
1.4.2 基于邻近信息的回归模型 018
1.4.3 鲁棒回归模型 020
……
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价