群论和物理学(英文版)
¥
54.41
7.4折
¥
74
全新
库存5件
作者S.Sternberg 著
出版社世界图书出版公司
出版时间2000-04
版次1
装帧平装
货号608 11-15
上书时间2024-11-14
商品详情
- 品相描述:全新
图书标准信息
-
作者
S.Sternberg 著
-
出版社
世界图书出版公司
-
出版时间
2000-04
-
版次
1
-
ISBN
9787506249652
-
定价
74.00元
-
装帧
平装
-
开本
其他
-
纸张
胶版纸
-
页数
429页
- 【内容简介】
-
Grouptheoryisoneofthegreatachievementsof19thcenturymathematics.Itemergedasaunifyingideadrawingonfourdifferentsources:numbertheory,thetheoryofequations,geometry,andcrystallography.TheearlymotivationfromnumbertheorystemmedfromtheworkofEuler,LegendreandGaussonpowerresidues.Inthetheoryofequations,thestudyofvariouspermutationgroupsbecameincreasinglyimportantthroughtheworkofLagrange,Ruffini,Gauss,Abel,Cauchy,andespeciallyGalois.Thediscoveryofnewtypesofgeometries-includingnon-Euclidean,affine,projectiveetc.-led,eventually,tothefamousErlangenprogramofKlein,whichproposedthatthetruestudyofanygeometryliesinananalysisofitsgroupofmotions.Incrystallography,thepossiblesymmetriesoftheinternalstructureofacrystalwereenumeratedlongbeforetherewasanypossibilityofitsphysicaldetermination(byX-rayanalysis).
- 【目录】
-
Preface
1Basicdefinitionsandexamples
1.1Groups:definitionandexamples
1.2Homomorphisms:therelationbetweenSL2,andtheLorentzgroup
1.3Theactionofagrouponaset
1.4Conjugationandconjugacyclasses
1.5Applicationstocrystallography
1.6ThetopologyofSU2andSO3
1.7Morphisms
1.8TheclassificationofthefinitesubgroupsofSO3
1.9TheclassificationofthefinitesubgroupsofO3
1.10Theicosahedralgroupandthefullerenes
2Representationtheoryoffinitegroups
2.1Definitions,examples,irreducibility
2.2Completereducibility
2.3Schur'slemma
2.4Charactersandtheirorthogonalityrelations
2.5Actiononfunctionspaces
2.6Theregularrepresentation
2.7Charactertables
2.8Therepresentationsofthesymmetricgroup
3Molecularvibrationsandhomogeneousvectorbundles
3.1Smalloscillationsandgrouptheory
3.2Moleculardisplacementsandvectorbundles
3.3Inducedrepresentations
3.4Principalbundles
3.5Tensorproducts
3.6Representativeoperatorsandquantummechanicalselectionrules
3.7Thesemiclassicaltheoryofradiation
3.8Semidirectproductsandtheirrepresentations
3.9Wigner'sclassificationoftheirreduciblerepresentationsofthePoincaregroup
3.10Parity
3.11TheMackeytheoremsoninducedrepresentations,withapplicationstothesymmetricgroup
3.12Exchangeforcesandinducedrepresentations
4CompactgroupsandLiegroups
4.1Haarmeasure
4.2ThePeter-Weyltheorem
4.3TheirreduciblerepresentationsofSU2
4.4TheirreduciblerepresentationsofSO3andsphericalharmonics
4.5Thehydrogenatom
4.6Theperiodictable
4.7Theshellmodelofthenucleus
4.8TheClebsch-Gordancoefficientsandisospin
4.9Relativisticwaveequations
4.10Liealgebras
4.11Representationsofsu2
5TheirreduciblerepresentationsofSUn
5.1TherepresentationofGlVonther-foldtensorproduct
5.2GlVspansHornsrTrV,TrV
5.3DecompositionofTrVintoirreducibles
5.4Computationalrules
5.5DescriptionoftensorsbelongingtoW
5.6RepresentationsofGlVandSlVonU
5.7Weightvectors
5.8Determinationoftheirreduciblefinite-dimensionalrepre-sentationsofSld,C
5.9Strangeness
5.10Theeight-foldway
5.11Quarks
5.12Colorandbeyond
5.13Wheredowestand
AppendixATheBravaislatticesandthearithmeticalcrystalclasses
A.1Thelatticebasisandtheprimitivecell
A.2The14Bravaislattices
AppendixBTensorproduct
AppendixCIntegralgeometryandtherepresentationsofthesymmetricgroup
C.1Partitionpairs
C.2Proofofthemaincombinatoriallemma
C.3TheLittlewood-RichardsonruleandYoung'srule
C.4TheringofvirtualrepresentationsofalltheSn
C.5Dimensionformulas
C.6TheMurnaghan-Nakayamarule
C.7CharactersofGlV
AppendixDWigner'stheoremonquantummechanicalsymmetries
AppendixECompactgroups,Haarmeasure,andthePeter-Weyltheorem
AppendixFAhistoryof19thcenturyspectroscopy
AppendixGCharactersandfixedpointformulasforLiegroups
Furtherreading
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价