• O\'Reilly:基于Spark NLP的自然语言处理
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

O\'Reilly:基于Spark NLP的自然语言处理

58 4.5折 128 全新

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者[美]亚历克斯·托马斯(Alex Thomas)

出版社中国电力出版社

出版时间2022-09

版次1

装帧其他

货号58935851

上书时间2024-11-15

牧野书屋

六年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 [美]亚历克斯·托马斯(Alex Thomas)
  • 出版社 中国电力出版社
  • 出版时间 2022-09
  • 版次 1
  • ISBN 9787519869670
  • 定价 128.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 404页
  • 字数 518.000千字
【内容简介】
本书介绍NLP基础知识和构建模块,然后再深入研究应用程序和系统构建。
  基础知识:了解自然语言处理、Apache Spark上的NLP和深度学习的基础知识。
  构建模块:学习构建 NLP 应用程序的技术(包括标记化、句子分割和命名实体识别),并了解它们的工作方式和原因。
  应用程序:探索构建你自己的NLP应用程序的设计、开发和实验过程。
  构建NLP系统:考虑生产和部署NLP模型的选项,包括支持哪些人类语言。
【作者简介】
 

Alex Thomas是Wisecube的首席数据科学家。他将自然语言处理和机器学习与临床数据、身份数据、雇主和求职者数据,以及现在的生物化学数据结合使用。 Alex从Apache Spark 0.9版就开始使用,并使用过NLP库和框架,其中包括UIMA和OpenNLP。
【目录】
目录

前言 . 1

第一部分 基础知识

第1 章 快速入门 . 9

1.1 简介 9

1.2 其他工具 11

1.3 建立你自己的开发环境 12

1.3.1 前置条件 12

1.3.2 启动Apache Spark 13

1.3.3 检查代码 13

1.4 熟悉Apache Spark .14

1.4.1 使用Spark NLP 启动Apache Spark 14

1.4.2 在Apache Spark 中加载和查看数据 15

1.5 Spark NLP 的Hello World 示例 18

第2 章 自然语言基础知识 27

2.1 什么是自然语言 27

2.1.1 语言的起源 28

2.1.2 口头语言和书面语言29

2.2 语言学 30

2.2.1 语音学和音系学 .30

2.2.2 词法学(形态学) 31

2.2.3 语法 32

2.2.4 语义学 .33

2.3 社会语言学:方言、语域和其他变体 34

2.3.1 礼节 34

2.3.2 语境 35

2.4 语用学 35

2.4.1 罗曼雅各布森 .35

2.4.2 如何运用语用学 .37

2.5 书写系统 37

2.5.1 起源 37

2.5.2 字母 38

2.5.3 辅音音素文字 .39

2.5.4 元音附标文字 .40

2.5.5 音节表 41

2.5.6 标识象形符 .41

2.6 编码 42

2.6.1 ASCII 42

2.6.2 Unicode 42

2.6.3 UTF-8 43

2.7 练习:分词 .44

2.7.1 英语分词 44

2.7.2 希腊语分词 45

2.7.3 Ge\'ez(阿姆哈拉语)分词 45

2.8 资源 46

第3 章 Apache Spark 上的NLP 49

3.1 并行性、并发性、分布式计算 .50

3.1.1 Apache Hadoop 之前的并行化 53

3.1.2 MapReduce 和 Apache Hadoop 53

3.1.3 Apache Spark 55

3.2 Apache Spark 架构 55

3.2.1 物理架构 55

3.2.2 逻辑架构 56

3.3 Spark SQL 和Spark MLlib 62

3.3.1 Transformer(转换器) .66

3.3.2 评估器和模型 69

3.3.3 预测结果评估 73

3.4 NLP 库 .76

3.4.1 功能库 .76

3.4.2 注释库 .77

3.4.3 其他库中的自然语言处理功能 78

3.5 Spark NLP 78

3.5.1 注释库 .78

3.5.2 阶段 79

3.5.3 预训练管道 87

3.5.4 Finisher 89

3.6 练习:构建主题模型 .91

3.7 资源 93

第4 章 深度学习基础知识 95

4.1 梯度下降 100

4.2 反向传播 101

4.3 卷积神经网络CNN . 113

4.3.1 滤波器 114

4.3.2 池化 114

4.4 循环神经网络RNN . 114

4.4.1 通过时间的反向传播. 115

4.4.2 Elman 网络 . 115

4.4.3 LSTM 116

4.5 练习1 . 116

4.6 练习2 . 116

4.7 资源 . 117

第二部分 构建模块

第5 章 文字处理 121

5.1 分词 .122

5.2 词表缩减 126

5.2.1 词干提取 .126

5.2.2 词形还原 .126

5.2.3 词干提取对比词形还原 127

5.2.4 拼写校对 .129

5.2.5 标准化 130

5.3 bag-of-words 模型.132

5.4 CountVectorizer .133

5.5 N-Gram 135

5.6 可视化:Word 和文档分发 137

5.7 练习 .142

5.8 资源 .142

第6 章 信息检索 143

6.1 倒排索引 144

6.2 向量空间模型 .151

6.2.1 删除停用词 154

6.2.2 逆向文件频率 156

6.2.3 使用Spark 159

6.3 练习 .159

6.4 资源 .160

第7 章 分类和回归 163

7.1 bag-of-word 模型特征 .166

7.2 正则表达式特征 167

7.3 特征选择 169

7.4 模型 .173

7.4.1 朴素贝叶斯算法 174

7.4.2 线性模型 .174

7.4.3 决策/ 回归树.174

7.4.4 深度学习算法 175

7.5 迭代 .175

7.6 练习 .178

第8 章 使用Keras 的序列模型 181

8.1 语句划分 182

8.2 段落划分 190

8.3 词性标注 191

8.4 条件随机场 196

8.5 分块和语法分析 196

8.6 语言模型 197

8.7 循环神经网络 .198

8.8 练习:字符 N-Grams 模型 205

8.9 练习:词义语言模型 206

8.10 资源 206

第9 章 信息提取 207

9.1 命名实体识别 .207

9.2 共指消解 217

9.3 断言状态检测 .218

9.4 关系提取 221

9.5 小结 .226

9.6 练习 .226

第10 章 主题建模 . 229

10.1 K-Means .230

10.2 潜在语义索引 234

10.3 非负矩阵分解 238

10.4 隐含狄利克雷分布模型 242

10.5 练习 245

第11 章 词嵌入 . 249

11.1 Word2vec 249

11.2 GloVe 261

11.3 fastText 262

11.4 Transformer 263

11.5 ELMo、BERT 和XLNet .263

11.6 Doc2vec 265

11.7 练习 266

第三部分 应用

第12 章 情感分析与情绪检测 269

12.1 问题陈述与约束 269

12.2 规划项目 .271

12.3 设计解决方案 274

12.4 实施解决方案 275

12.5 测试并衡量解决方案 281

12.5.1 业务指标 281

12.5.2 以模型为中心的指标 281

12.5.3 基础设施指标 .282

12.5.4 过程指标 283

12.5.5 离线与在线模型测量 284

12.6 审查 284

12.6.1 初始部署 285

12.6.2 回退计划 286

12.6.3 下一步 286

12.7 结论 286

第13 章 建立知识库 287

13.1 问题陈述与约束 288

13.2 规划项目 .289

13.3 设计解决方案 290

13.4 实施解决方案 291

13.5 测试并衡量解决方案 300

13.5.1 业务指标 300

13.5.2 以模型为中心的指标 300

13.5.3 基础设施指标 .301

13.5.4 过程指标 301

13.6 审查 302

13.7 结论 302

第14 章 搜索引擎 . 303

14.1 问题陈述与约束 304

14.2 规划项目 .304

14.3 设计解决方案 305

14.4 实施解决方案 305

14.5 测试并衡量解决方案 313

14.5.1 业务指标 313

14.5.2 以模型为中心的指标 314

14.6 审查 315

14.7 结论 316

第15 章 聊天机器人 317

15.1 问题陈述与约束 318

15.2 规划项目 .319

15.3 设计解决方案 319

15.4 实施解决方案 321

15.5 测试并衡量解决方案 331

15.5.1 业务指标 331

15.5.2 以模型为中心的指标 332

15.6 审查 332

15.7 结论 332

第16 章 目标字符识别 333

16.1 OCR 任务的种类 333

16.1.1 印刷文本的图像和PDF 识别成文本 333

16.1.2 手写文本图像识别成文本 334

16.1.3 日常环境中的文本图像识别成文本 334

16.1.4 文本图像识别成目标 335

16.1.5 关于不同书写系统的说明 336

16.2 问题陈述与约束 336

16.3 规划项目 .337

16.4 实施解决方案 337

16.5 测试并衡量解决方案 343

16.6 以模型为中心的指标 343

16.7 审查 343

16.8 结论 343

第四部分 构建NLP 系统

第17 章 支持多种语言 347

17.1 语言类型学 347

17.2 场景:学术论文分类 347

17.3 不同语言中的文本处理 348

17.3.1 合成词 348

17.3.2 形态复杂性349

17.4 迁移学习与多语言深度学习 .350

17.5 跨语种搜索 351

17.6 检查清单 .352

17.7 结论 353

第18 章 人工标注 . 355

18.1 指南 356

18.2 场景:学术论文分类 356

18.3 标注员内部一致性 .358

18.4 标注迭代 .359

18.5 标注文本 .360

18.5.1 分类 .360

18.5.2 标注 .360

18.6 检查清单 .361

18.7 结论 362

第19 章 NLP 应用程序的产品化 . 363

19.1 Spark NLP 模型缓存 .364

19.2 Spark NLP 与TensorFlow 集成 365

19.2.1 Spark 优化基础 .366

19.2.2 设计级优化367

19.2.3 分析工具 368

19.2.4 监视 .369

19.2.5 管理数据资源 .369

19.2.6 测试基于NLP 的应用程序 369

19.2.7 单元测试 370

19.2.8 集成测试 370

19.2.9 冒烟测试与健全测试 370

19.2.10 性能测试 371

19.2.11 可用性测试 371

19.2.12 演示基于NLP 的应用程序 371

19.3 检查清单 372

19.3.1 模型部署清单 .372

19.3.2 扩展和性能检查表 373

19.3.3 测试检查清单 .373

19.4 结论 374

术语表 377
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP