• 金融中的数值方法和优化
  • 金融中的数值方法和优化
  • 金融中的数值方法和优化
  • 金融中的数值方法和优化

    释放查看图文详情

1 / 4
21年品牌 40万+商家 超1.5亿件商品

金融中的数值方法和优化

68 7.6折 89 九品

仅1件

河北邯郸

送至北京市朝阳区

运费快递 ¥6.00

活动满100元包邮(快递)

认证卖家担保交易快速发货售后保障

作者[瑞士]吉利(M.Gilli) 著

出版社世界图书出版公司

出版时间2013-01

版次1

装帧平装

货号B942

上书时间2024-06-04

评价15493好评率 99.91%

  • 品相不错 434
  • 发货速度快 401
  • 包装仔细 397
  • 物流很快 397
  • 非常满意 302
  • 值得信赖 270
  • 服务态度好 253
  • 物超所值 240
  • 品相超预期 235
  • 价格实惠 233
  • 品相未达预期 3
  • 描述不符 3
  • 有小瑕疵 2
  • 书质量太差 2
  • 影响阅读 2
  • 价格有点贵 1
  • 包装简陋 1
  • 服务不太好 1
  • 包装损坏 1
  • 发货太慢 1
  • 描述严重不符 1
  • 服务态度差 1
  • 没收到货 1
  • 没有物流信息 1
  • 物流太差 1
  • 联系不到卖家 1
查看全部评价

一得书苑

十一年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [瑞士]吉利(M.Gilli) 著
  • 出版社 世界图书出版公司
  • 出版时间 2013-01
  • 版次 1
  • ISBN 9787510052651
  • 定价 89.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 584页
  • 正文语种 英语
【内容简介】
  《金融中的数值方法和优化》旨在为读者介绍金融计算工具―基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化》的参考价值大大提高。
【目录】
ListofAlgorithms
Acknowledgements
1.Introduction
1.1Aboutthisbook
1.2Principles
1.3onsoftware
1.4onapproximationsandaccuracy
1.5Summary:thethemeofthebook

PartOneFundamentals
2.Numericalanalysisinanutshell
2.1Computerarithmetic
Representationofrealnumbers
Machineprecision
Exampleoflimitationsoffloatingpointarithmetic
2.2Measuringerrors
2.3Approximatingderivativeswithfinitedifferences
Approximatingfirst-orderderivatives
Approximatingsecond-orderderivatives
Partialderivatives
Howtochooseh
Truncationerrorforforwarddifference
2.4Numericalinstabilityandill-conditioning
Exampleofanumericallyunstablealgorithm
Exampleofanill-conditionedproblem
2.5Conditionnumberofamatrix
Commentsandexamples
2.6Aprimeronalgorithmicandcomputationalcomplexity
2.6.1Criteriaforcomparison
Orderofcomplexityandclassification
2.AOperationcountforbasiclinearalgebraoperations
3.LinearequationsandLeastSquaresproblems
Choiceofmethod
3.1Directmethods
3.1.1Triangularsystems
3.1.2LUfactorization
3.1.3Choleskyfactorization
3.1.4QRdecomposition
3.1.5Singularvaluedecomposition
3.2Iterativemethods
3.2.1Jacobi,Gauss-Seidel,andSOR
Successiveoverrelaxation
3.2.2Convergenceofniterativemethods
3.2.3Generalstructureofalgorithmsforiterativemethods
3.2.4Blockiterativemethods
3.3Sparselinearsystems
3.3.1Tridiagonalsystems
3.3.2Irregularsparsematrices
3.3.3Structuralpropertiesofsparsematrices
3.4TheLeastSquaresproblem
3.4.1Methodofnormalequations
3.4.2LeastSquaresviaQRfactorization
3.4.3LeastSquaresviaSVDdecomposition
3.4.4Finalremarks
ThebackslashoperatorinMatlab
4.Finitedifferencemethods
4.1Anexampleofanumericalsolution
Afirstnumericalapproximation
Asecondnumericalapproximation
4.2Classificationofdifferentialequations
4.3TheBlack-Scholesequation
4.3.1Explicit,implicit,andθ-methods
4.3.2Initialandboundaryconditionsanddefinitionofthegrid
4.3.3Implementationoftheθ-methodwithMatlab
4.3.4Stability
4.3.5Coordinatetransformationofspacevariables
4.4Americanoptions
4.AAnoteonMatlab'sfunctionspdiags
5.Binomialtrees
5.1Motivation
Matchingmoments
5.2Growingthetree
5.2.1Implementingatree
5.2.2Vectorization
5.2.3Binomialexpansion
5.3Earlyexerase
5.4Dividends
5.5TheGreeks
Greeksfromthetree

PartTwoSimulation
6.Generatmgrandomnumbers
6.1MonteCarlomethodsandsampling
6.1.1Howitallbegan
6.1.2Financialapplications
6.2Uniformrandomnumbergenerators
6.2.1Congruentialgenerators
6.2.2MersenneTwister
6.3Nonuniformdistributions
6.3.1Theinversionmethod
6.3.2Acceptance-rejectionmethod
6.4Specializedmethodsforselecteddistributions
6.4.1Normaldistribution
6.4.2HigherordermomentsandtheCornish-Fisherexpansion
6.4.3Furtherdistributions
6.5Samplingfromadiscreteset
6.5.1Discreteuniformselection
6.5.2Roulettewheelselection
6.5.3Randompermutationsandshuffling
6.6Samplingerrors-andhowtoreducethem
6.6.1Thebasicproblem
6.6.2Quasi-MonteCarlo
6.6.3Stratifiedsampling
6.6.4Variancereduction
6.7Drawingfromempiricaldistributions
6.7.1Datarandomization
6.7.2Bootstrap
6.8Controlledexperimentsandexperimentaldesign
6.8.1Replicabilityandceterisparibusanalysis
6.8.2AvailablerandomnumbergeneratorsinMatlab
6.8.3UniformrandomnumbersfromMatlab'srandfunction
6.8.4GaussianrandomnumbersfromMatlab'srandnfunction
6.8.5Remedies
7.Modelingdependenaes
7.1Transformationmethods
7.1.1Linearcorrelation
7.1.2Rankcorrelation
7.2Markovchains
7.2.1Concepts
7.2.2TheMetropolisalgorithm
7.3Copulamodels
7.3.1Concepts
7.3.2Simulationusingcopulas
8.Agentleintroductiontofinancialsimulation
8.1Settingthestage
8.2Single-periodsimulations
8.2.1Terminalassetprices
8.2.2l-over-Nportfolios
8.2.3Europeanoptions
8.2.4VaRofacoveredputportfolio
8.3Simplepriceprocesses
8.4Processeswithmemoryinthelevelsofreturns
8.4.1Efficientversusadaptivemarkets
8.4.2Movingaverages
8.4.3Autoregressivemodels
8.4.4Autoregressivemovingaverage(ARMA)models
8.4.5SimulatingARMAmodels
8.4.6Modelswithlong-termmemory
8.5Time-varyingvolatility
8.5.1Theconcepts
8.5.2Autocorrelatedtime-varyingvolatility
8.5.3SimulatingGARCHprocesses
8.5.4Selectedfurtherautoregressivevolatilitymodels
8.6Adaptiveexpectationsandpatternsinpriceprocesses
8.6.1Price-earningsmodels
8.6.2Modelswithlearning
8.7Historicalsimulation
8.7.1Backtesting
8.7.2Bootstrap
8.8Agent-basedmodelsandcomplexity
9.Financialsimulationatwork:somecasestudies
9.1Constantproportionportfolioinsurance(CPPI)
9.1.1Basicconcepts
9.1.2Bootstrap
9.2VaRestimationwithExtremeValueTheory
9.2.1Basicconcepts
9.2.2Scalingthedata
9.2.3UsingExtremeValueTheory
9.3Optionpricing
9.3.1Modelingprices
9.3.2Pricingmodels
9.3.3Greeks
9.3.4Quasi-MonteCarlo
PartThreeOptimization
点击展开 点击收起

   相关推荐   

   为你推荐   

—  没有更多了  —

微信扫码逛孔网

无需下载

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP

满包邮

活动内容

满100元包邮(快递)

包邮地区 :上海市、江苏省、浙江省、安徽省、江西省、北京市、天津市、山西省、山东省、河北省、湖南省、湖北省、河南省、广东省、广西、福建省、辽宁省、吉林省、黑龙江省、陕西省、甘肃省、宁夏、青海省、重庆市、云南省、贵州省、四川省

活动时间
从2025-02-11 11:48:42开始,到2025-02-28 23:59:59结束
活动说明
满100包邮活动