实分析和概率论(英文版·第2版)
¥
80
九品
仅1件
作者[美]达德利(Dudley,R.M.) 著
出版社机械工业出版社
出版时间2006-07
版次1
装帧平装
货号B13-7
上书时间2024-12-26
商品详情
- 品相描述:九品
图书标准信息
-
作者
[美]达德利(Dudley,R.M.) 著
-
出版社
机械工业出版社
-
出版时间
2006-07
-
版次
1
-
ISBN
9787111193487
-
定价
69.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
555页
- 【内容简介】
-
《实分析和概率论(英文版)(第2版)》是一本广受称赞的教科书,清晰地讲解了现代概率论以及度量空间与概率测度之间的相互作用。本书分两部分,第一部分介绍了实分析的内容,包括基本集合论、一般拓扑学、测度论、积分法、巴拿赫空间和拓扑空间中的泛函分析导论、凸集和函数、拓扑空间上的测度等。第二部分介绍了基于测度论的概率方面的内容,包括大数律、遍历定理、中心极限定理、条件期望、鞅收敛等。另外,随机过程一章(第12章)还介绍了布朗运动和布朗桥。
与前版相比,本版内容更完善,一开始就介绍了实数系的基础和泛代数中的一致逼近的斯通-魏尔斯特拉斯定理;修订和改进了几节的内容,扩充了大量历史注记;增加了很多新的习题,以及对一些习题的解答的提示。
- 【作者简介】
-
.
- 【目录】
-
PrefacetotheCambridgeEdition
1Foundations;SetTheory
1.1DefinitionsforSetTheoryandtheRealNumberSystem
1.2RelationsandOrderings
*1.3TransfiniteInductionandRecursion
1.4Cardinality
1.5TheAxiomofChoiceandItsEquivalents
2GeneralTopology
2.1Topologies,Metrics,andContinuity
2.2CompactnessandProductTopologies
2.3CompleteandCompactMetricSpaces
2.4SomeMetricsforFunctionSpaces
2.5CompletionandCompletenessofMetricSpaces
*2.6ExtensionofContinuousFunctions
*2.7UniformitiesandUniformSpaces
*2.8Compactification
3Measures
3.1IntroductiontoMeasures
3.2SemiringsandRings
3.3CompletionofMeasures
3.4LebesgueMeasureandNonmeasurableSets
*3.5AtomicandNonatomicMeasures
4Integration
4.1SimpleFunctions
*4.2Measurability
4.3ConvergenceTheoremsforIntegrals
4.4ProductMeasures
*4.5Daniell-StoneIntegrals
5LpSpaces;IntroductiontoFunctionalAnalysis
5.1InequalitiesforIntegrals
5.2NormsandCompletenessofLP
5.3HilbertSpaces
5.40rthonormalSetsandBases
5.5LinearFormsonHilbertSpaces,InclusionsofLPSpaces,
andRelationsBetweenTwoMeasures
5.6SignedMeasures
6ConvexSetsandDualityofNormedSpaces
6.1Lipschitz,Continuous,andBoundedFunctionals
6.2ConvexSetsandTheirSeparation
6.3ConvexFunctions
*6.4DualityofLpSpaces
6.5UniformBoundednessandClosedGraphs
*6.6TheBmnn-MinkowskiInequality
7Measure,Topology,andDifferentiation,
7.1BaireandBorelo-AlgebrasandRegularityofMeasures
*7.2LebesguesDifferentiationTheorems
*7.3TheRegularityExtension
*7.4TheDualofC(K)andFourierSeries
*7.5AlmostUniformConvergenceandLusinsTheorem
8IntroductiontoProbabilityTheory
8.1BasicDefinitions
8.2InfiniteProductsofProbabilitySpaces
8.3LawsofLargeNumbers
*8.4ErgodicTheorems
9ConvergenceofLawsandCentralLimitTheorems
9.1DistributionFunctionsandDensities
9.2ConvergenceofRandomVariables
9.3ConvergenceofLaws
9.4CharacteristicFunctions
9.5UniquenessofCharacteristicFunctions
andaCentralLimitTheorem
9.6TriangularArraysandLindebergsTheorem
9.7SumsofIndependentRealRandomVariables
*9.8TheLevyContinuityTheorem;InfinitelyDivisible
andStableLaws
10ConditionalExpectationsandMartingales
10.1ConditionalExpectations
10.2RegularConditionalProbabilitiesandJensens
Inequality
10.3Martingales
10.4OptionalStoppingandUniformIntegrability
10.5ConvergenceofMartingalesandSubmartingales
*10.6ReversedMartingalesandSubmartingales
*10.7SubadditiveandSuperadditiveErgodicTheorems
11ConvergenceofLawsonSeparableMetricSpaces
11.1LawsandTheirConvergence
11.2LipschitzFunctions
11.3MetricsforConvergenceofLaws
11.4ConvergenceofEmpiricalMeasures
11.5TightnessandUniformTightness
*11.6StrassensTheorem:NearbyVariables
WithNearbyLaws
*11.7AUniformityforLawsandAlmostSurelyConverging
RealizationsofConvergingLaws
*11.8Kantorovich-RubinsteinTheorems
*11.9U-Statistics
12StochasticProcesses
12.1ExistenceofProcessesandBrownianMotion
12.2TheStrongMarkovPropertyofBrownianMotion
12.3ReflectionPrinciples,TheBrownianBridge,
andLawsofSuprema
12.4LawsofBrownianMotionatMarkovTimes:
SkorohodImbedding
12.5LawsoftheIteratedLogarithm
13Measurability:BorelIsomorphismandAnalyticSets
*13.1BorelIsomorphism
*13.2AnalyticSets
AppendixAAxiomaticSetTheory
A.1MathematicalLogic
A.2AxiomsforSetTheory
A.3OrdinalsandCardinals
A.4FromSetstoNumbers
AppendixBComplexNumbers,VectorSpaces,
andTaylorsTheoremwithRemainder
AppendixCTheProblemofMeasure
AppendixDRearrangingSumsofNonnegativeTerms
AppendixEPathologiesofCompactNonmetricSpaces
AuthorIndex
SubjectIndex
NotationIndex
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价