国外数学名著系列(续1)(影印版)39:稀疏线性系统的迭代方法(第2版)
正版,无笔记划线,无水印,无印章
¥
175
九五品
仅1件
作者[美]萨阿德 著
出版社科学出版社
出版时间2009-01
版次2
装帧精装
货号25457
上书时间2024-11-30
商品详情
- 品相描述:九五品
-
书边有个黄点
图书标准信息
-
作者
[美]萨阿德 著
-
出版社
科学出版社
-
出版时间
2009-01
-
版次
2
-
ISBN
9787030234834
-
定价
98.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
528页
-
字数
665千字
-
正文语种
英语
- 【内容简介】
-
《国外数学名著系列(续1)(影印版)39:稀疏线性系统的迭代方法(第2版)》canbeusedtoteachgraduate-levelcoursesoniterativemethodsforlinearsystems.Engineersandmathematicianswillfinditscontentseasilyaccessible,andpractitionersandeducatorswillvalueitasahelpfulresource.Theprefaceincludessyllabithatcanbeusedforeitherasemester-orquarter-lengthcourseinbothmathematicsandcomputerscience.IterativeMethodsforSparseLinearSystems,SecondEditiongivesanin-depth,up-to-dateviewofpracticalalgorithmsforsolvinglarge-scalelinearsystemsofequations.Theseequationscannumberinthemillionsandaresparseinthesensethateachinvolvesonlyasmallnumberofunknowns.Themethodsdescribedareiterative,i.e.,theyprovidesequencesofapproximationsthatwillconvergetothesolution.
Thisneweditionincludesawiderangeofthebestmethodsavailabletoday.Theauthorhasaddedanewchapteronmultigridtechniquesandhasupdatedmaterialthroughoutthetext,particularlythechaptersonsparsematrices,Krylovsubspacemethods,preconditioningtechniques,andparallelpreconditioners.Materialonoldertopicshasbeenremovedorshortened,numerousexerciseshavebeenadded,andmanytypographicalerrorshavebeencorrected.Theupdatedandexpandedbibliographynowincludesmorerecentworksemphasizingnewandimportantresearchtopicsinthisfield.
- 【目录】
-
PrefacetotheSecondEdition
PrefacetotheFirstEdition
1BackgroundinLinearAlgebra
1.1Matrices
1.2SquareMatricesandEigenvalues
1.3TypesofMatrices
1.4VectorInnerProductsandNorms
1.5MatrixNorms
1.6Subspaces,Range,andKernel
1.7OrthogonalVectorsandSubspaces
1.8CanonicalFormsofMatrices
1.8.1ReductiontotheDiagonalForm
1.8.2TheJordanCanonicalForm
1.8.3TheSchurCanonicalForm
1.8.4ApplicationtoPowersofMatrices
1.9NormalandHermitianMatrices
1.9.1NormalMatrices
1.9.2HermitianMatrices
1.10NonnegativeMatrices,M-Matrices
1.11PositiveDefiniteMatrices
1.12ProjectionOperators
1.12.1RangeandNullSpaceofaProjector
1.12.2MatrixRepresentations
1.12.3OrthogonalandObliqueProjectors
1.12.4PropertiesofOrthogonalProjectors
1.13BasicConceptsinLinearSystems
1.13.1ExistenceofaSolution
1.13.2PerturbationAnalysis
Exercises
NotesandReferences
2DiscretizationofPartialDifferentialEquations
2.1PartialDifferentialEquations
2.1.1EllipticOperators
2.1.2TheConvectionDiffusionEquation
2.2FiniteDifferenceMethods
2.2.1BasicApproximations
2.2.2DifferenceSchemesfortheLaplacianOperator
2.2.3FiniteDifferencesforOne-DimensionalProblerr
2.2.4UpwindSchemes
2.2.5FiniteDifferencesforTwo-DimensionalProblerr
2.2.6FastPoissonSolvers
2.3TheFiniteElementMethod
2.4MeshGenerationandRefinement
2.5FiniteVolumeMethod
Exercises
NotesandReferences
3SparseMatrices
3.1Introduction
3.2GraphRepresentations
3.2.1GraphsandAdjacencyGraphs
3.2.2GraphsofPDEMatrices
3.3PermutationsandReorderings
3.3.1BasicConcepts
3.3.2RelationswiththeAdjacencyGraph
3.3.3CommonReorderings
3.3.4Irreducibility
3.4StorageSchemes
3.5BasicSparseMatrixOperations
3.6SparseDirectSolutionMethods
3.6.1MDOrdering
3.6.2NDOrdering
3.7TestProblems
Exercises
NotesandReferences
4BasicIterativeMethods
4.1Jacobi,Gauss-Seidel,andSuccessiveOverrelaxation
4.1.1BlockRelaxationSchemes
4.1.2IterationMatricesandPreconditioning
4.2Convergence
4.2.1GeneralConvergenceResult
4.2.2RegularSplittings
4.2.3DiagonallyDominantMatrices
4.2.4SymmetricPositiveDefiniteMatrices
4.2.5PropertyAandConsistentOrderings
4.3AlternatingDirectionMethods
Exercises
NotesandReferences
5ProjectionMethods
5.1BasicDefinitionsandAlgorithms
5.1.1GeneralProjectionMethods
5.1.2MatrixRepresentation
5.2GeneralTheory
5.2.1TwoOptimalityResults
5.2.2InterpretationinTermsofProjectors
5.2.3GeneralErrorBound
5.3One-DimensionalProjectionProcesses
5.3.1SteepestDescent
5.3.2MRIteration
5.3.3ResidualNormSteepestDescent
5.4AdditiveandMultiplicativeProcesses
Exercises
NotesandReferences
6KryiovSubspaceMethods,PartI
6.1Introduction
6.2KrylovSubspaces
6.3ArnoldisMethod
6.3.1TheBasicAlgorithm
6.3.2PracticalImplementations
6.4ArnoldisMethodforLinearSystems
6.4.1Variation1:RestartedFOM
6.4.2Variation2:IOMandDIOM
6.5GeneralizedMinimalResidualMethod
6.5.1TheBasicGMRESAlgorithm
6.5.2TheHouseholderVersion
6.5.3PracticalImplementationIssues
6.5.4BreakdownofGMRES
6.5.5Variation1:Restarting
6.5.6Variation2:TruncatedGMRESVersions
6.5.7RelationsBetweenFOMandGMRES
6.5.8ResidualSmoothing
6.5.9GMRESforComplexSystems
6.6TheSymmetricLanczosAlgorithm
6.6.1TheAlgorithm
6.6.2RelationtoOrthogonalPolynomials
6.7TheConjugateGradientAlgorithm
6.7.1DerivationandTheory"
6.7.2AlternativeFormulations
6.7.3EigenvalueEstimatesfromtheCGCoefficients
6.8TheConjugateResidualMethod
6.9GeneralizedConjugateResidual,ORTHOMIN,andORTHODIR
6.10TheFaber-ManteuffelTheorem
6.11ConvergenceAnalysis
6.11.1RealChebyshevPolynomials
6.11.2ComplexChebyshevPolynomials
6.11.3ConvergenceoftheCGAlgorithm
6.11.4ConvergenceofGMRES
6.12BlockKrylovMethods
Exercises
NotesandReferences
7KryiovSubspaeeMethods,PartII
7.1LanczosBiorthogonalization
7.1.1TheAlgorithm
7.1.2PracticalImplementations
7.2TheLanczosAlgorithmforLinearSystems
7.3TheBiconjugateGradientandQuasi-MinimalResidualAlgorithms
7.3.1TheBCGAlgorithm
7.3.2QMRAlgorithm
7.4Transpose-FreeVariants
7.4.1CGS
7.4.2BICGSTAB
7.4.3TFQMR
Exercises
NotesandReferences
8MethodsRelatedtotheNormalEquations
8.1TheNormalEquations
8.2RowProjectionMethods
8.2.1Gauss-SeidelontheNormalEquations
8.2.2CimminosMethod
8.3ConjugateGradientandNormalEquations
8.3.1CGNR
8.3.2CGNE
8.4Saddle-PointProblems
Exercises
NotesandReferences
9PreconditionedIterations
9.1Introduction
9.2PreconditionedConjugateGradient
9.2.1PreservingSymmetry
9.2.2EfficientImplementations
……
10PreconditioningTechniques
11ParallelImplementations
12ParallelPreconditioners
13MultigridMethods
14DomainDecompositionMethods
Bibliography
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价