¥ 5 全新
仅1件
作者安德烈·布可夫(Andriy Burkov) 著;韩江雷 译
出版社人民邮电出版社
出版时间2020-01
版次1
装帧平装
货号22
上书时间2024-12-11
内容提要
本书用简短的篇幅、精炼的语言,讲授机器学习领域必备的知识和技能。全书共11章和一个术语表,依次介绍了机器学习的基本概念、符号和定义、算法、基本实践方法、神经网络和深度学习、问题与解决方案、进阶操作、非监督学习以及其他学习方式等,涵盖了监督学习和非监督学习、支持向量机、神经网络、集成学习、梯度下降、聚类分析、维度降低、自编码器、迁移学习、强化学习、特征工程、超参数调试等众多核心概念和方法。全书最后给出了一个较为详尽的术语表。
本书能够帮助读者了解机器学习是如何工作的,为进一步理解该领域的复杂问题和进行深入研究打好基础。本书适合想要学习和掌握机器学习的软件从业人员、想要运用机器学习技术的数据科学家阅读,也适合想要了解机器学习的一般读者参考。
— 没有更多了 —
以下为对购买帮助不大的评价