• 智能目标识别与分类
  • 智能目标识别与分类
  • 智能目标识别与分类
  • 智能目标识别与分类
  • 智能目标识别与分类
21年品牌 40万+商家 超1.5亿件商品

智能目标识别与分类

38 4.3折 88 八五品

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者焦李成 著

出版社科学出版社

出版时间2010-01

版次1

装帧平装

货号N24587A

上书时间2024-11-26

3号典藏阁

六年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
首页有些水印有几个字
图书标准信息
  • 作者 焦李成 著
  • 出版社 科学出版社
  • 出版时间 2010-01
  • 版次 1
  • ISBN 9787030265470
  • 定价 88.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 551页
  • 正文语种 简体中文
  • 丛书 智能科学技术著作丛书
【内容简介】
《智能目标识别与分类》较为全面地介绍了模式识别的一个分支——机器学习的最新进展,深入分析了机器学习中的多个关键问题及多种快速稀疏学习方法,具体描述了机器学习在大规模数据识别与分类的工程设计与实现问题。
全书共10章,内容包括:绪论,统计学习理论、再生核技术与支撑矢量机算法,支撑矢量机理论基础,先进支撑矢量机,核学习机,稀疏核支撑矢量机,快速大规模支撑矢量机,高分辨距离像识别,谱集成学习机,基于核学习的图像识别。
《智能目标识别与分类》可作为高等院校计算机、信号与信息处理、应用数学、信息管理与信息系统、电子商务等专业研究生和高年级本科生的教材,也可供计算机应用软件开发人员和人工智能与模式识别方面的研究人员参考。
【目录】
《智能科学技术著作丛书》序
前言
第1章绪论
1.1人工神经网络的发展
1.2Bayes网络的发展
1.3正则技术的发展
1.4统计学习理论的发展
1.5核机器学习方法的发展
1.5.1有监督核机器学习方法
1.5.2非监督核机器学习方法
1.6本书的主要内容
参考文献

第2章统计学习理论、再生核技术与支撑矢量机算法
2.1统计学习理论
2.1.1学习问题的模型
2.1.2学习过程的一致性理论
2.1.3学习机推广能力的界
2.1.4控制学习过程的推广能力
2.1.5构造学习算法
2.2再生核与再生核Hilbert空间
2.2.1再生核
2.2.2特征空间和经验特征空间
2.2.3再生核Hilbert空间与经验再生核Hilbert空间
2.2.4再生核与再生核Hilbert空间实例
2.2.5Mercer容许核的构造
2.2.6再生核作为距离测度
2.2.7再生核Hilbert空间的函数表示理论
2.3支撑矢量机算法
2.3.1模式识别支撑矢量机
2.3.2回归支撑矢量机
参考文献

第3章支撑矢量机理论基础
3.1支撑矢量机几何特性分析
3.1.1模式识别支撑矢量机几何特性分析
3.1.2回归估计支撑矢量机几何特性分析
3.1.3小结与讨论
3.2支撑矢量预选取的中心距离比值法
3.2.1中心距离比值法
3.2.2算法性能仿真
3.2.3一种新的推广能力衡量准则
3.2.4Mercer核参数的选择
3.2.5仿真实验
3.2.6小结与讨论
参考文献
附录

第4章先进支撑矢量机
4.1线性规划支撑矢量机
4.1.1线性规划线性支撑矢量机
4.1.2线性规划非线性支撑矢量机
4.1.3仿真实验
4.1.4小结与讨论
4.2无约束二次规划回归估计支撑矢量机
4.2.1无约束二次规划回归估计支撑矢量机
4.2.2仿真实验
4.2.3小结与讨论
4.3复值支撑矢量机
4.3.1模式识别复值支撑矢量机
4.3.2回归估计复值支撑矢量机
4.3.3小结与讨论
4.4基于微分容量控制的学习机,
4.4.1推广能力及微分容量控制
4.4.2基于微分容量控制的学习机
4.4.3仿真实验
4.4.4小结与讨论
4.5基于决策树的支撑矢量机多分类方法
4.5.1支撑矢量机的多分类方法
4.5.2基于决策树的支撑矢量机多分类方法
4.5.3仿真实验
4.5.4小结与讨论
参考文献
附录

第5章核学习机
5.1隐空间核机器
5.1.1隐空间
5.1.2隐空间主分量分析
5.1.3隐空间支撑矢量机
5.1.4最小二乘隐空间支撑矢量机
5.1.5稀疏隐空间支撑矢量机
5.2核函数的构造
5.2.1坐标变换核
5.2.2子波核函数
5.2.3尺度核函数
5.2.4性能仿真
5.2.5小结与讨论
5.3基于父子波正交投影核的支撑矢量机
5.3.1父子波正交投影核
5.3.2基于父子波正交投影核的支撑矢量机
5.3.3算法性能分析和父子波正交投影核的参数选择
5.3.4仿真实验
5.3.5小结与讨论
5.4子波核函数网络
5.4.1子波核函数网络模型
5.4.2子波核函数网络学习算法
5.4.3仿真实验
5.4.4小结与讨论
5.5核聚类算法
5.5.1聚类分析
5.5.2核聚类算法
5.5.3仿真实验
5.5.4小结与讨论
参考文献
附录

第6章稀疏核支撑矢量机
6.1Bayes核机器
6.1.1Bayes学习
6.1.2基于有效子集选择的Bayes学习
6.2贪婪分阶段支撑矢量机
6.2.1支撑矢量机
6.2.2再生核Hnbert空间范数和支撑矢量机
6.2.3贪婪分阶段支撑矢量机
6.2.4性能评价
6.2.5仿真实验
6.2.6算法机理与性能分析
6.2.7小结与讨论
6.3特征标度核Fisher判别分析
6.3.1核Fisher判断分析
6.3.2光滑留一交叉验证误差
6.3.3扩展到多分类
6.3.4仿真实验
6.3.5小结与讨论
6.4序列稀疏贪婪优化
6.4.1最小二乘支撑矢量机
6.4.2序列稀疏贪婪优化
6.4.3模型选择
6.4.4仿真实验
6.4.5小结与讨论
参考文献
附录

第7章快速大规模支撑矢量机
7.1基本域大规模支撑矢量回归
7.1.1基本域支撑矢量回归
7.1.2不敏感Huber损失函数和有限牛顿算法
7.1.3递归有限牛顿算法
7.1.4仿真实验
……
第8章高分辨距离像识别
第9章谱集成学习机
第10章基于核学习的图像识别
参考文献
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

首页有些水印有几个字
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP