• Spark大数据商业实战三部曲:内核解密 商业案例 性能调优
21年品牌 40万+商家 超1.5亿件商品

Spark大数据商业实战三部曲:内核解密 商业案例 性能调优

30-01-02

12 八五品

仅1件

广东东莞
认证卖家担保交易快速发货售后保障

作者王家林、段智华、夏阳 著

出版社清华大学出版社

出版时间2018-01

版次1

装帧平装

货号30-01-02

上书时间2025-01-04

万丈图书

六年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 王家林、段智华、夏阳 著
  • 出版社 清华大学出版社
  • 出版时间 2018-01
  • 版次 1
  • ISBN 9787302489627
  • 定价 299.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 1143页
  • 字数 1815千字
  • 正文语种 简体中文
【内容简介】
  《Spark大数据商业实战三部曲:内核解密|商业案例|性能调优》基于Spark 2.2.X,以Spark商业案例实战和Spark在生产环境下几乎所有类型的性能调优为核心,以Spark内核解密为基石,分为上篇、中篇、下篇,对企业生产环境下的Spark商业案例与性能调优抽丝剥茧地进行剖析。上篇基于Spark源码,从一个动手实战案例入手,循序渐进地全面解析了Spark 2.2新特性及Spark内核源码;中篇选取Spark开发中*具有代表的经典学习案例,深入浅出地介绍,在案例中综合应用Spark的大数据技术;下篇性能调优内容基本完全覆盖了Spark在生产环境下的所有调优技术。
【作者简介】
:
王家林,中国有名的Spark培训专家,ApacheSpark、Android技术中国区布道师,DT大数据梦工厂创始人和首席专家,Android软硬整合专家。深入研究了Spark中0.5.0到2.2.1中的共30个版本的Spark源码,尤其撞长Spark在生产环境下各种类型和场景的故陣排除和解决。目前致力于大数据Spark和人工智能TensorFlow的深度S合。
段智华,就职于中国电信股份有限公司上海分公司,系统架构师,CSDNW客专家。专注于Spark大数据技术研发及准广,跟随Spark核心源码技术的发展,深入研究Spark2.1.1版本及Spark2.2.0版本的源码优化,对Spark大数据处理、机器学习等技术领域有丰富的实战经验和浓厚兴趣。
【目录】

上篇  内核解密
第1章  电光石火间体验Spark 2.2开发实战 2
1.1  通过RDD实战电影点评系统入门及源码阅读 2
1.1.1  Spark核心概念图解 2
1.1.2  通过RDD实战电影点评系统案例 4
1.2  通过DataFrame和DataSet实战电影点评系统 7
1.2.1  通过DataFrame实战电影点评系统案例 7
1.2.2  通过DataSet实战电影点评系统案例 10
1.3  Spark 2.2源码阅读环境搭建及源码阅读体验 11
第2章  Spark 2.2技术及原理 14
2.1  Spark 2.2综述 14
2.1.1  连续应用程序 14
2.1.2  新的API 15
2.2  Spark 2.2 Core 16
2.2.1  第二代Tungsten引擎 16
2.2.2  SparkSession 16
2.2.3  累加器API 17
2.3  Spark 2.2 SQL 19
2.3.1  Spark SQL 20
2.3.2  DataFrame和Dataset API 20
2.3.3  Timed Window 21
2.4  Spark 2.2 Streaming 21
2.4.1  Structured Streaming 21
2.4.2  增量输出模式 23
2.5  Spark 2.2 MLlib 27
2.5.1  基于DataFrame的Machine Learning API 28
2.5.2  R的分布式算法 28
2.6  Spark 2.2 GraphX 29
第3章  Spark的灵魂:RDD和DataSet 30
3.1  为什么说RDD和DataSet是Spark的灵魂 30
3.1.1  RDD的定义及五大特性剖析 30
3.1.2  DataSet的定义及内部机制剖析 34
3.2  RDD弹性特性七个方面解析 36
3.3  RDD依赖关系 43
3.3.1  窄依赖解析 43
3.3.2  宽依赖解析 45
3.4  解析Spark中的DAG逻辑视图 46
3.4.1  DAG生成的机制 46
3.4.2  DAG逻辑视图解析 47
3.5  RDD内部的计算机制 49
3.5.1  Task解析 49
3.5.2  计算过程深度解析 49
3.6  Spark RDD容错原理及其四大核心要点解析 57
3.6.1  Spark RDD容错原理 57
3.6.2  RDD容错的四大核心要点 57
3.7  Spark RDD中Runtime流程解析 59
3.7.1  Runtime架构图 59
3.7.2  生命周期 60
3.8  通过WordCount实战解析Spark RDD内部机制 70
3.8.1  Spark WordCount动手实践 70
3.8.2  解析RDD生成的内部机制 72
3.9  基于DataSet的代码到底是如何一步步转化成为RDD的 78
第4章  Spark Driver启动内幕剖析 81
4.1  Spark Driver Program剖析 81
4.1.1  Spark Driver Program 81
4.1.2  SparkContext深度剖析 81
4.1.3  SparkContext源码解析 82
4.2  DAGScheduler解析 96
4.2.1  DAG的定义 96
4.2.2  DAG的实例化 97
4.2.3  DAGScheduler划分Stage的原理 98
4.2.4  DAGScheduler划分Stage的具体算法 99
4.2.5  Stage内部Task获取最佳位置的算法 113
4.3  TaskScheduler解析 116
4.3.1  TaskScheduler原理剖析 116
4.3.2  TaskScheduler源码解析 117
4.4  SchedulerBackend解析 132
4.4.1  SchedulerBackend原理剖析 132
4.4.2  SchedulerBackend源码解析 132
4.4.3  Spark程序的注册机制 133
4.4.4  Spark程序对计算资源Executor的管理 134
4.5  打通Spark系统运行内幕机制循环流程 135
4.6  本章总结 145
第5章  Spark集群启动原理和源码详解 146
5.1  Master启动原理和源码详解 146
5.1.1  Master启动的原理详解 146
5.1.2  Master启动的源码详解 147
5.1.3  Master HA双机切换 157
5.1.4  Master的注册机制和状态管理解密 163
5.2  Worker启动原理和源码详解 170
5.2.1  Worker启动的原理流程 170
5.2.2  Worker启动的源码详解 174
5.3  ExecutorBackend启动原理和源码详解 178
5.3.1  ExecutorBackend接口与Executor的关系 178
5.3.2  ExecutorBackend的不同实现 179
5.3.3  ExecutorBackend中的通信 181
5.3.4  ExecutorBackend的异常处理 183
5.4  Executor中任务的执行 184
5.4.1  Executor中任务的加载 184
5.4.2  Executor中的任务线程池 185
5.4.3  任务执行失败处理 186
5.4.4  揭秘TaskRunner 188
5.5  Executor执行结果的处理方式 189
5.6  本章总结 197
第6章  Spark Application提交给集群的原理和源码详解 198
6.1  Spark Application到底是如何提交给集群的 198
6.1.1  Application提交参数配置详解 198
6.1.2  Application提交给集群原理详解 199
6.1.3  Application提交给集群源码详解 201
6.2  Spark Application是如何向集群申请资源的 211
6.2.1  Application申请资源的两种类型详解 211
6.2.2  Application申请资源的源码详解 213
6.3  从Application提交的角度重新审视Driver 219
6.3.1  Driver到底是什么时候产生的 220
6.3.2  Driver和Master交互原理解析 238
6.3.3  Driver和Master交互源码详解 244
6.4  从Application提交的角度重新审视Executor 249
6.4.1  Executor到底是什么时候启动的 249
6.4.2  Executor如何把结果交给Application 254
6.5  Spark 1.6 RPC内幕解密:运行机制、源码详解、Netty与Akka等 254
6.6  本章总结 267
第7章  Shuffle原理和源码详解 268
7.1  概述 268
7.2  Shuffle的框架 269
7.2.1  Shuffle的框架演进 269
7.2.2  Shuffle的框架内核 270
7.2.3  Shuffle框架的源码解析 272
7.2.4  Shuffle数据读写的源码解析 275
7.3  Hash Based Shuffle 281
7.3.1  概述 281
7.3.2  Hash Based Shuffle内核 282
7.3.3  Hash Based Shuffle数据读写的源码解析 285
7.4  Sorted Based Shuffle 290
7.4.1  概述 292
7.4.2  Sorted Based Shuffle内核 293
7.4.3  Sorted Based Shuffle数据读写的源码解析 294
7.5  Tungsten Sorted Based Shuffle 302
7.5.1  概述 302
7.5.2  Tungsten Sorted Based Shuffle内核 302
7.5.3  Tungsten Sorted Based Shuffle数据读写的源码解析 303
7.6  Shuffle与Storage 模块间的交互 309
7.6.1  Shuffle注册的交互 310
7.6.2  Shuffle写数据的交互 314
7.6.3  Shuffle读数据的交互 315
7.6.4  BlockManager架构原理、运行流程图和源码解密 315
7.6.5  BlockManager解密进阶:BlockManager初始化和注册解密、BlockManager- Master工作解密、BlockTransferService解密、本地数据读写解密、远程数据读写解密 324
7.7  本章总结 341
第8章  Job工作原理和源码详解 342
8.1  Job到底在什么时候产生 342
8.1.1  触发Job的原理和源码解析 342
8.1.2  触发Job的算子案例 344
8.2  Stage划分内幕 345
8.2.1  Stage划分原理详解 345
8.2.2  Stage划分源码详解 346
8.3  Task全生命周期详解 346
8.3.1  Task的生命过程详解 347
8.3.2  Task在Driver和Executor中交互的全生命周期原理和源码详解 348
8.4  ShuffleMapTask和ResultTask处理结果是如何被Driver管理的 364
8.4.1  ShuffleMapTask执行结果和Driver的交互原理及源码详解 364
8.4.2  ResultTask执行结果与Driver的交互原理及源码详解 370
第9章  Spark中Cache和checkpoint原理和源码详解 372
9.1  Spark中Cache原理和源码详解 372
9.1.1  Spark中Cache原理详解 372
9.1.2  Spark中Cache源码详解 372
9.2  Spark中checkpoint原理和源码详解 381
9.2.1  Spark中checkpoint原理详解 381
9.2.2  Spark中checkpoint源码详解 381
第10章  Spark中Broadcast和Accumulator原理和源码详解 391
10.1  Spark中Broadcast原理和源码详解 391
10.1.1  Spark中Broadcast原理详解 391
10.1.2  Spark中Broadcast源码详解 393
10.2  Spark中Accumulator原理和源码详解 396
10.2.1  Spark中Accumulator原理详解 396
10.2.2  Spark中Accumulator源码详解 396
第11章  Spark与大数据其他经典组件整合原理与实战 399
11.1  Spark组件综合应用 399
11.2  Spark与Alluxio整合原理与实战 400
11.2.1  Spark与Alluxio整合原理 400
11.2.2  Spark与Alluxio整合实战 401
11.3  Spark与Job Server整合原理与实战 403
11.3.1  Spark与Job Server整合原理 403
11.3.2  Spark与Job Server整合实战 404
11.4  Spark与Redis整合原理与实战 406
11.4.1  Spark与Redis整合原理 406
11.4.2  Spark与Redis整合实战 407
中篇  商业案例
第12章  Spark商业案例之大数据电影点评系统应用案例 412
12.1  通过RDD实现分析电影的用户行为信息 412
12.1.1  搭建IDEA开发环境 412
12.1.2  大数据电影点评系统中电影数据说明 425
12.1.3  电影点评系统用户行为分析统计实战 428
12.2  通过RDD实现电影流行度分析 431
12.3  通过RDD分析各种类型的最喜爱电影TopN及性能优化技巧 433
12.4  通过RDD分析电影点评系统仿QQ和微信等用户群分析及广播
背后机制解密 436
12.5  通过RDD分析电影点评系统实现Java和Scala版本的二次排序系统 439
12.5.1  二次排序自定义Key值类实现(Java) 440
12.5.2  电影点评系统二次排序功能实现(Java) 442
12.5.3  二次排序自定义Key值类实现(Scala) 445
12.5.4  电影点评系统二次排序功能实现(Scala) 446
12.6  通过Spark SQL中的SQL语句实现电影点评系统用户行为分析 447
12.7  通过Spark SQL下的两种不同方式实现口碑最佳电影分析 451
12.8  通过Spark SQL下的两种不同方式实现最流行电影分析 456
12.9  通过DataFrame分析最受男性和女性喜爱电影TopN 457
12.10  纯粹通过DataFrame分析电影点评系统仿QQ和微信、淘宝等用户群 460
12.11  纯粹通过DataSet对电影点评系统进行流行度和不同年龄阶段兴趣分析等 462
12.11.1  通过DataSet实现某特定电影观看者中男性和女性不同年龄的人数 463
12.11.2  通过DataSet方式计算所有电影中平均得分最高
(口碑最好)的电影TopN 464
12.11.3  通过DataSet方式计算所有电影中粉丝或者观看人数最多(最流行电影)的电影TopN 465
12.11.4  纯粹通过DataSet的方式实现所有电影中最受男性、女性喜爱的
电影Top10 466
12.11.5  纯粹通过DataSet的方式实现所有电影中QQ或者微信核心目标
用户最喜爱电影TopN分析 467
12.11.6  纯粹通过DataSet的方式实现所有电影中淘宝核心目标用户最喜爱电影TopN分析 469
12.12  大数据电影点评系统应用案例涉及的核心知识点原理、源码及案例代码 470
12.12.1  知识点:广播变量Broadcast内幕机制 470
12.12.2  知识点:SQL全局临时视图及临时视图 473
12.12.3  大数据电影点评系统应用案例完整代码 474
12.13  本章总结 496
第13章  Spark 2.2实战之Dataset开发实战企业人员管理系统应用案例 498

点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP