测度论讲义(第3版)
正版新书 新华官方库房直发 可开电子发票
¥
44.08
7.6折
¥
58
全新
库存13件
作者严加安
出版社科学出版社
ISBN9787030678034
出版时间2004-08
版次2
装帧平装
开本16开
纸张胶版纸
页数268页
字数338千字
定价58元
货号SC:9787030678034
上书时间2024-12-24
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
内容简介:
本书系统完整地介绍了测度论和概率论的基础知识。前5章介绍一般可测空间和Hausdorff空间上的测度与积分,包括局部紧拓扑群上的Haar测度。第6章介绍距离空间上测度的弱收敛和局部紧Hausdorff空间上测度的淡收敛,第7章介绍与测度论有关的概率论基础,第8章介绍离散时间鞅的基本理论,第9章介绍Hilbert空间和Banach空间上的测度,第10章内容包括容度的Choquet积分,离散集函数的Mobius反转,Shapley值和Shannon熵。书中还收录了作者在测度论和概率论基础方面的一些研究成果。本书适合作为概率统计专业和其他数学专业的研究生教材,也可作为科研人员和高等院校教师的参考书。
目录:
第三版前言
第二版前言
第一版前言
第1章集类与测度1
1.1集合运算与集类1
1.2单调英定理(集合形式)4
1.3测度与非负案函数8
1.4外测度与测度的扩张11
1.5欧氏空间中的Lebesgue-Stieltjes测度16
1.6测度的逼近17
第2童可测映射20
2.1定义及基本性质20
2.2单调类定理(函数形式)24
2.3可测函数序列的几种收敛28
第3章积分和空间LP 33
3.1积分的基本性质33
3.2积分号下取极限37
3.3不定积分与符号测度40
3.4空间L”及其对偶49
3.5空间L∞(Ω,F)和L∞(Ω,F , m)的对偶57
3.6 Daniell积分59
3.7Bochner积分和 Pettis积分63
第4董乘积可测空间上的测度与积分68
4.1乘积可测空间68
4.2乘积测度与Fubini定理69
4.3由α有限核产生的测度74
4.4无穷乘积左间上的概率测度76
4.5 Kolmogorov相容性定理及Tulcea定理的推广78
4.6概率测度序列的投彩极限83
4.7随机Daniell 积分及其核表示85
第5童Hausdorff空间上的测度与积分89
5.1拓扑空间89
5.2局部紧Hausdorff 空间上的测度与Riesz表现定理96
5.3 Hausdorf空间上的正则测度101
5.4空间Co(X)的对偶105
...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价