Python数据科学应用从入门到精通
正版新书 新华官方库房直发 可开电子发票
¥
89.01
6.9折
¥
129
全新
库存4件
作者张甜, 杨维忠编著
出版社清华大学出版社
ISBN9787302646853
出版时间2023-11
版次1
装帧平装
开本16开
纸张胶版纸
页数484页
字数816千字
定价129元
货号SC:9787302646853
上书时间2024-12-24
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
作者简介:
张甜,山东大学博士生,拥有7年商业银行工作经历和8年学术研究经历。精通Python、R、Stata、SPSS等多种统计分析软件,精通高级计量经济学、机器学习。在《财贸经济》等很好期刊发表多篇著作,著有多本畅销书,深受读者欢迎。
杨维忠,山东大学西方经济学硕士,CPA,目前就职于某全国性股份制商业银行总行,担任总行数据分析与机器学习内训师。精通Python、Stata、SPSS、Eviews、Excel等多种统计分析软件,具有深厚的学术研究功底、丰富的实践操作经历和授课经验,尤其擅长将各种统计分析方法与机器学习算法应用到工作中,著有多本畅销数据分析教材,深受读者欢迎。
主编推荐:
《Python数据科学应用从入门到精通》是张甜博士和数据分析领域专家杨维忠合力打造的精心之作,现在已成为编辑推荐。本书全面介绍了Python数据分析的基本概念和技能,包括数据清洗、数据可视化、统计分析、机器学习等。重要的是,本书注重实践应用,提供了大量的实例和案例,帮助读者更好地理解和掌握所学知识。无论是经济学、管理学、统计学、金融学、社会学、医学还是电子商务等专业学生,都可以将其作为学习Python数据分析的专业教材和参考书。而对于企业和事业单位来说,本书也是数字化人才培养的教科书和工具书。同时,职场人士也可以利用本书自学,掌握Python数据分析,提升数据挖掘、分析和可视化建模能力,从而提高工作效率和改善绩效水平。
内容简介:
随着数据存储、数据处理等大数据技术的快速发展,数据科学在各行各业得到广泛的应用。数据清洗、特征工程、数据可视化、数据挖掘与建模等已成为高校师生和职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“数据科学应用”有机结合,为数字化人才的培养助力。全书共分13章,内容包括:第1章数据科学应用概述;第2章Python的入门基础知识;第3章数据清洗;第4~6章特征工程介绍,包括特征选择、特征处理和特征提取;第7章数据可视化应用;第8~13章介绍6种数据挖掘与建模的方法,分别为线性回归、Logistic回归、决策树、随机森林、神经网络、RFM分析。《Python数据科学应用从入门到精通》既适合作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python数据科学应用的专业教材或参考书,也适合作为企事业单位数字化人才培养的教科书与工具书。此外,还可以作为职场人士提升数据处理与分析挖掘能力,提高工作效能和绩效水平的自学Python数据科学应用的工具书。
目录:
第1章 数据科学应用概述 1
1.1 什么是数据清洗、特征工程、数据可视化、数据挖掘与建模 1
1.1.1 数据清洗的概念 1
1.1.2 特征工程的概念 2
1.1.3 数据可视化的概念 4
1.1.4 数据挖掘与建模的概念 4
1.2 为什么要开展数据清洗、特征工程、数据可视化和数据挖掘与建模 4
1.2.1 数据清洗、特征工程的重要性 4
1.2.2 数据可视化的重要性 5
1.2.3 数据挖掘与建模的重要性 5
1.3 为什么要将Python作为实现工具 6
1.4 数据清洗、特征工程、数据可视化和数据挖掘与建模的主要内容 6
1.4.1 数据清洗的主要内容 6
1.4.2 特征工程的主要内容 7
1.4.3 数据可视化的主要内容 7
1.4.4 数据挖掘与建模的主要内容 8
1.5 数据清洗、特征工程、数据可视化和数据挖掘与建模的应用场景 8
1.5.1 数据清洗、特征工程的应用场景 8
1.5.2 数据可视化的应用场景 9
1.5.3 数据挖掘与建模的应用场景 10
1.6 数据清洗、特征工程和数据可视化的注意事项 14
1.6.1 数据清洗、特征工程的注意事项 14
1.6.2 数据可视化的注意事项 14
1.7 数据挖掘与建模的注意事项 15
1.8 习题 19
第2章 Python入门基础 21
2.1 Python概述 21
2.2 Anaconda平台的下载与安装 22
2.2.1 Anaconda平台的下载 22
...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价