PyTorch深度学习指南 卷3 序列与自然语言处理
正版新书 新华官方库房直发 可开电子发票
¥
87.57
6.3折
¥
139
全新
库存6件
作者(巴西)丹尼尔·沃格特·戈多伊
出版社机械工业出版社
ISBN9787111744597
出版时间2024-03
版次1
装帧平装
开本16开
纸张胶版纸
页数310页
字数0.494千字
定价139元
货号SC:9787111744597
上书时间2024-12-23
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
主编推荐:
国外Pytorch深度学习畅销书 全彩印刷
作者拥有20余年从业经验
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读。
以下是部分国外读者书评
Michael:理解GPT的敲门砖!
我对这本书感到惊讶,以我生疏的数学技能,居然可以从头到尾毫无问题地阅读。这三本系列丛书是我能接近理解的第一套深度学习书。作者基本上使用最小数据样本的逐步代码来完成任何机制/数学。
真是我相见恨晚的一套丛书。
Sebastian:这本书写得非常好。对非常高级的概念进行了清晰、全面、易懂的解读。提供的实现细节帮助您快速轻松地进入深度学习领域。
内容简介:
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书为该套丛书的第三卷:序列与自然语言处理。本书主要介绍了循环神经网络(RNN、GRU和LSTM)和一维卷积;Seq2Seq模型、注意力、自注意力、掩码和位置编码;Transformer、层归一化和视觉Transformer(ViT);BERT、GPT-2、单词嵌入和HuggingFace库等内容。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读学习。
目录:
前言
致谢
关于作者
译者序
常见问题
为什么选择PyTorch?
为什么选择这套书?
谁应该读这套书?
我需要知道什么?
如何阅读这套书?
下一步是什么?
设置指南
官方资料库
环境
谷歌Colab
……
— 没有更多了 —
以下为对购买帮助不大的评价