• 机器学习导论
21年品牌 40万+商家 超1.5亿件商品

机器学习导论

正版新书 新华官方库房直发 可开电子发票

49.77 6.3折 79 全新

库存14件

江苏南京
认证卖家担保交易快速发货售后保障

作者(土)埃塞姆·阿培丁(Ethem Alpaydin) 著;范明 译

出版社机械工业出版社

ISBN9787111521945

出版时间2016-01

版次1

装帧平装

开本16开

纸张胶版纸

页数356页

定价79元

货号SC:9787111521945

上书时间2024-12-23

文源文化

六年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
全新正版 提供发票
商品描述
作者简介:
埃塞姆·阿培丁(Ethem Alpaydin)土耳其伊斯坦布尔博阿齐奇大学计算机工程系的教授。于1990年在洛桑联邦理工学院获博士学位,先后在美国麻省理工学院和伯克利大学工作和进行博士后研究。Ethem博士主要从事机器学习方面的研究,是剑桥大学《The Computer Journal》杂志编委和EIsevier《Pattern Recognition》志的副主编。2001年和2002年,Ethem博士先后获得土耳其科学院青年科学家奖和土耳其科学与技术研究委员会科学奖。
内容简介:
本书是关于机器学习这一主题内容全面的教科书,涵盖了通常在机器学习导论中并不包括的广泛题材。对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、核机器、图方法、隐马尔可夫模型、贝叶斯估计、组合多学习器、增强学习以及机器学习实验的设计与分析等。
目录:
出版者的话
译者序
前言
符号说明
第1章引言1
1.1什么是机器学习1
1.2机器学习的应用实例2
1.2.1学习关联性2
1.2.2分类3
1.2.3回归5
1.2.4非监督学习6
1.2.5增强学习7
1.3注释8
1.4相关资源10
1.5习题11
1.6参考文献12
第2章监督学习13
2.1由实例学习类13
2.2VC维16
2.3概率近似正确学习16
2.4噪声17
2.5学习多类18
2.6回归19
2.7模型选择与泛化21
2.8监督机器学习算法的维23
2.9注释24
2.10习题25
2.11参考文献26
第3章贝叶斯决策理论27
3.1引言27
3.2分类28
3.3损失与风险29
3.4判别式函数30
3.5关联规则31
3.6注释33
3.7习题33
3.8参考文献36
第4章参数方法37
4.1引言37
4.2优选似然估计37
4.2.1伯努利密度38
4.2.2多项式密度38
4.2.3高斯(正态)密度39
4.3评价估计:偏倚和方差39
4.4贝叶斯估计40
4.5参数分类42
4.6回归44
4.7调整模型的复杂度:偏倚/方差两难选择46
4.8模型选择过程49

...

—  没有更多了  —

以下为对购买帮助不大的评价

全新正版 提供发票
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP