人工智能 复杂问题求解的结构和策略 英文版 第6版
¥
34.01
7.4折
¥
46
九品
仅1件
作者[美]卢格尔 著
出版社机械工业出版社
出版时间2009-03
版次1
装帧平装
货号A4
上书时间2024-12-16
商品详情
- 品相描述:九品
图书标准信息
-
作者
[美]卢格尔 著
-
出版社
机械工业出版社
-
出版时间
2009-03
-
版次
1
-
ISBN
9787111256564
-
定价
46.00元
-
装帧
平装
-
开本
32开
-
纸张
胶版纸
-
页数
753页
-
正文语种
英语
-
原版书名
Artificial Intelligence:Structures And Strategies For Complex Problem Solving
-
丛书
经典原版书库
- 【内容简介】
-
《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授权机械工业出版社独家出版。未经出版者书面许可,不得以任何方式复制或抄袭《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》内容。
仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行。
《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》封面贴有PearsonEducation(培生教育出版集团)激光防伪标签,无标签者不得销售。
- 【作者简介】
-
GeorgeF.Luger1973年在宾夕法尼亚大学获得博士学位,并在之后的5年间在爱丁堡大学人工智能系进行博士后研究,现在是新墨西哥大学计算机科学研究、语言学及心理学教授。
- 【目录】
-
Preface
PublishersAcknowledgements
PARTⅠARTIFIClALINTELLIGENCE:ITSROOTSANDSCOPE
1A1:HISTORYANDAPPLICATIONS
1.1FromEdentoENIAC:AttitudestowardIntelligence,Knowledge,andHumanArtifice
1.20verviewofAlApplicationAreas
1.3ArtificialIntelligenceASummary
1.4EpilogueandReferences
1.5Exercises
PARTⅡARTIFlClALINTELLIGENCEASREPRESENTATIONANDSEARCH
2THEPREDICATECALCULUS
2.0Intr0血ction
2.1ThePropositionalCalculus
2.2ThePredicateCalculus
2.3UsingInferenceRulestoProducePredicateCalculusExpressions
2.4Application:ALogic-BasedFinancialAdvisor
2.5EpilogueandReferences
2.6Exercises
3STRUCTURESANDSTRATEGIESFORSTATESPACESEARCH
3.0Introducfion
3.1GraphTheory
3.2StrategiesforStateSpaceSearch
3.3usingthestateSpacetoRepresentReasoningwiththePredicateCalculus
3.4EpilogueandReferences
3.5Exercises
4HEURISTICSEARCH
4.0Introduction
4.lHillClimbingandDynamicProgrammin9
4.2TheBest-FirstSearchAlgorithm
4.3Admissibility,Monotonicity,andInformedness
4.4UsingHeuristicsinGames
4.5ComplexityIssues
4.6EpilogueandReferences
4.7Exercises
5STOCHASTICMETHODS
5.0Introduction
5.1TheElementsofCountin9
5.2ElementsofProbabilityTheory
5.3ApplicationsoftheStochasticMethodology
5.4BayesTheorem
5.5EpilogueandReferences
5.6Exercises
6coNTROLANDIMPLEMENTATIONOFSTATESPACESEARCH
6.0Introductionl93
6.1Recursion.BasedSearch
6.2ProductionSystems
6.3TheBlackboardArchitectureforProblemSolvin9
6.4EpilogueandReferences
6.5Exercises
PARTⅢCAPTURINGINTELLIGENCE:THEAICHALLENGE
7KNOWLEDGEREPRESENTATION
7.0IssuesinKnowledgeRepresentation
7.1ABriefHistoryofAIRepresentationalSystems
7.2ConceptualGraphs:ANetworkLanguage
7.3AlternativeRepresentationsandOntologies
7.4AgentBasedandDistributedProblemSolving
7.5EpilogueandReferences
7.6Exercises
8STRONGMETHODPROBLEMSOLVING
8.0Introduction
8.1OverviewofExpertSygemTechnology
8.2Rule.BasedExpertSygems
8.3Model-Based,CaseBasedandHybridSystems
8.4Planning
8.5EpilogueandReferences
8.6Exercises
9REASONINGINUNCERTAINSTUATIONS
9.0Introduction
9.1Logic-BasedAbductiveInference
9.2Abduction:AlternativestoLogic
9.3TheStochasticApproachtoUncertainty
9.4EpilogueandReferences
9.5Exercises
PARTⅣ
MACHINELEARNING
10MACHINELEARNING:SYMBOL-BASED
10.0Introduction
10.1AFrameworkforSymbolbasedLearning
10.2versionSpaceSearch
10.3TheID3DecisionTreeInductionAlgorithm
10.4InductiveBiasandLearnability
10.5KnowledgeandLearning
10.6UnsupervisedLearning
10.7ReinforcementLearning
10.8EpilogueandReferenees
10.9Exercises
11MACHINELEARNING:CONNECTIONtST
11.0Introduction
11.1FoundationsforConnectionistNetworks
11.2PerceptronLearning
11.3BackpropagationLearning
11.4CompetitiveLearning
11.5HebbianCoincidenceLearning
11.6AttractorNetworksor“Memories”
11.7EpilogueandReferences
11.8Exercises506
12MACHINELEARNING:GENETICANDEMERGENT
12.0GeneticandEmergentMedeIsofLearning
12.111IcGeneticAlgorithm
12.2ClassifierSystemsandGeneticProgramming
12.3ArtmcialLifeandSociety-BasedLearning
12.4EpilogueandReferences
12.5Exercises
13MACHINELEARNING:PROBABILISTIC
13.0StochasticandDynamicModelsofLearning
13.1HiddenMarkovModels(HMMs)
13.2DynamicBayesianNetworksandLearning
13.3StochasticExtensionstoReinforcementLearning
13.4EpilogueandReferences
13.5Exercises
PARTⅤ
AD,ANCEDTOPlCSFORAlPROBLEMSOLVING
14AUTOMATEDREASONING
14.0IntroductiontoWeakMethodsinTheoremProving
14.1TIIeGeneralProblemSolverandDifiel"enceTables
14.2ResolutionTheOremProving
14.3PROLOGandAutomatedReasoning
14.4FurtherIssuesinAutomatedReasoning
14.5EpilogueandReferences
14.6Exercises
15UNDERs-rANDINGNATURALLANGUAGE
15.0TheNaturalLang~~geUnderstandingProblem
15.1DeconstructingLanguage:AnAnalysis
15.2Syntax
15.3TransitionNetworkParsersandSemantics
15.4StochasticToolsforLanguageUnderstanding
15.5NaturalLanguageApplications
15.6EpilogueandReferences
15.7Exercises
……
PARTⅥEPILOGUE
16ARTIFICIALINTELLIGENCEASEMPIRICALENQUIRY
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价