图神经网络:基础与前沿
¥
27.62
3.5折
¥
79
九五品
仅1件
作者马腾飞
出版社电子工业出版社
出版时间2021-01
版次1
装帧其他
货号A4
上书时间2024-12-13
商品详情
- 品相描述:九五品
图书标准信息
-
作者
马腾飞
-
出版社
电子工业出版社
-
出版时间
2021-01
-
版次
1
-
ISBN
9787121405020
-
定价
79.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
152页
-
字数
152千字
- 【内容简介】
-
图神经网络是人工智能领域的一个新兴方向,它不仅迅速得到了学术界的广泛关注,而且被成功地应用在工业界的多个领域。本书介绍了图神经网络和图深度学习的基础知识和前沿研究,不仅包括它们的发展历史和经典模型,还包括图神经网络在深层网络、无监督学习、大规模训练、知识图谱推理等方面的前沿研究,以及它们在不同领域(如推荐系统、生化医疗、自然语言处理等)的实际应用。 本书既可作为人工智能领域研究和开发人员的技术参考书,也可作为对图上的深度学习感兴趣的高年级本科生和研究生的入门书。
- 【作者简介】
-
马腾飞,IBM全球研究院总部研究员,东京大学博士,研究方向为机器学习、自然语言处理等。近期的研究集中在图神经网络及其在医疗、生化、金融等领域的应用。在ICLR、NeurIPS、AAAI等人工智能国际会议上发表论文30多篇,并与他人合作,在AAAI、KDD等会议上多次讲授图神经网络的前沿专题。
- 【目录】
-
第 1 章 当深度学习遇上图:图神经网络的兴起 1
1.1 什么是图1
1.2 深度学习与图 2
1.2.1 图数据的特殊性质 3
1.2.2 将深度学习扩展到图上的挑战 4
1.3 图神经网络的发展 5
1.3.1 图神经网络的历史 5
1.3.2 图神经网络的分类 7
1.4 图神经网络的应用 8
1.4.1 图数据上的任务 8
1.4.2 图神经网络的应用领域 8
1.5 小结 11
第 2 章 预备知识 13
2.1 图的基本概念 13
2.2 简易图谱论 15
2.2.1 拉普拉斯矩阵 16
2.2.2 拉普拉斯二次型 17
2.2.3 拉普拉斯矩阵与图扩散 18
2.2.4 图论傅里叶变换 19
2.3 小结 20
第 3 章 图神经网络模型介绍 21
3.1 基于谱域的图神经网络 21
3.1.1 谱图卷积网络 21
3.1.2 切比雪夫网络 24
3.1.3 图卷积网络 25
3.1.4 谱域图神经网络的局限和发展 27
3.2 基于空域的图神经网络 28
3.2.1 早期的图神经网络与循环图神经网络 28
3.2.2 再谈图卷积网络 29
3.2.3 GraphSAGE:归纳式图表示学习 31
3.2.4 消息传递神经网络 34
3.2.5 图注意力网络 37
3.2.6 图同构网络:Weisfeiler-Lehman 测试与图神经网络的表达力 39
3.3 小试牛刀:图卷积网络实战 42
3.4 小结 46
第 4 章 深入理解图卷积网络 47
4.1 图卷积与拉普拉斯平滑:图卷积网络的过平滑问题 47
4.2 图卷积网络与个性化 PageRank 50
4.3 图卷积网络与低通滤波 52
4.3.1 图卷积网络的低通滤波效果 52
4.3.2 图滤波神经网络 54
4.3.3 简化图卷积网络 55
4.4 小结 56
第 5 章 图神经网络模型的扩展 57
5.1 深层图卷积网络 57
5.1.1 残差连接 58
5.1.2 JK-Net 60
5.1.3 DropEdge 与 PairNorm 60
5.2 图的池化 61
5.2.1 聚类与池化 62
5.2.2 可学习的池化:DiffPool 63
5.2.3 Top-k 池化和 SAGPool 65
5.3 图的无监督学习 67
5.3.1 图的自编码器 67
5.3.2 最大互信息 70
5.3.3 其他 72
5.3.4 图神经网络的预训练 72
5.4 图神经网络的大规模学习 74
5.4.1 点采样 75
5.4.2 层采样 76
5.4.3 图采样 78
5.5 不规则图的深度学习模型 80
5.6 小结 81
第 6 章 其他图嵌入方法 83
6.1 基于矩阵分解的图嵌入方法 83
6.1.1 拉普拉斯特征映射 83
6.1.2 图分解 84
6.2 基于随机游走的图嵌入方法 86
6.2.1 DeepWalk 86
6.2.2 node2vec 87
6.2.3 随机游走与矩阵分解的统一 88
6.3 从自编码器的角度看图嵌入 88
6.4 小结 89
第 7 章 知识图谱与异构图神经网络 91
7.1 知识图谱的定义和任务 92
7.1.1 知识图谱 92
7.1.2 知识图谱嵌入 92
7.2 距离变换模型 94
7.2.1 TransE 模型 94
7.2.2 TransH 模型 95
7.2.3 TransR 模型 96
7.2.4 TransD 模型 97
7.3 语义匹配模型 97
7.3.1 RESCAL 模型 98
7.3.2 DistMult 模型 98
7.3.3 HolE 模型 98
7.3.4 语义匹配能量模型 99
7.3.5 神经张量网络模型 99
7.3.6 ConvE 模型 100
7.4 知识图谱上的图神经网络 100
7.4.1 关系图卷积网络 100
7.4.2 带权重的图卷积编码器 101
7.4.3 知识图谱与图注意力模型 102
7.4.4 图神经网络与传统知识图谱嵌入的结合:CompGCN 103
7.5 小结 103
第 8 章 图神经网络模型的应用 105
8.1 图数据上的一般任务 105
8.1.1 节点分类 106
8.1.2 链路预测 106
8.1.3 图分类 107
8.2 生化医疗相关的应用 108
8.2.1 预测分子的化学性质和化学反应 108
8.2.2 图生成模型与药物发现 109
8.2.3 药物/蛋白质交互图的利用 116
8.3 自然语言处理相关的应用 117
8.4 推荐系统上的应用 121
8.5 计算机视觉相关的应用 123
8.6 其他应用 124
8.7 小结 124
参考文献 127
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价