Chapter 1 Fundamental Number-Theoretic Algorithms 1.1 Introduction 1.1.1 Algorithms 1.1.2 Multi-precision 1.1.3 Base Fields and Rings 1.1.4 Notations 1.2 The Powering Algorithms 1.3 Euclid‘s Algorithms 1.3.1 Euclid‘s and Lehmer‘s Algorithms 1.3.2 Euclid‘s Extended Algorithms 1.3.3 The Chinese Remainder Theorem 1.3.4 Continued Fraction Expansions of Real Numbers 1.4 The Legendre Symbol 1.4.1 The Groups (Z/nZ)* 1.4.2 The Legendre-Jacobi-Kronecker Symbol 1.5 Computing Square Roots Modulo p 1.5.1 The Algorithm of ToneUi and Shanks 1.5.2 The Algorithm of Cornacchia 1.6 Solving Polynomial Equations Modulo p 1.7 Power Detection 1.7.1 Integer Square Roots 1.7.2 Square Detection 1.7.3 Prime Power Detection 1.8 Exercises for Chapter 1 Chapter 2 Algorithms for Linear Algebra and Lattices 2.1 Introduction 2.2 Linear Algebra Algorithms on Square Matrices 2.2.1 Generalities on Linear Algebra Algorithms 2.2.2 Gaussian Elimination and Solving Linear Systems 2.2.3 Computing Determinants 2.2.4 Computing the Characteristic Polynomial 2.3 Linear Algebra on General Matrices 2.3.1 Kernel and Image 2.3.2 Inverse Image and Supplement 2.3.3 Operations on Subspaces 2.3.4 Remarks on Modules 2.4 Z-Modules and the Hermite and Smith Normal Forms 2.4.1 Introduction to Z-Modules 2.4.2 The Hermite Normal Form 2.4.3 Applications of the Hermite Normal Form 2.4.4 The Smith Normal Form and Applications 2.5 Generalities on Lattices 2.5.1 Lattices and Quadratic Forms 2.5.2 The Gram-Schmidt Orthogonalization Procedure 2.{} Lattice Reduction Algorithms 2.6.1 The LLL Algorithm 2.6.2 The LLL Algorithm with Deep Insertions 2.6.3 The Integral LLL Algorithm 2.6.4 LLL Algorithms for Linearly Dependent Vectors 2.7 Applications of the LLL Algorithm 2.7.1 Computing the Integer Kernel and Image of a Matrix 2.7.2 Linear and Algebraic Dependence Using LLL 2.7.3 Finding Small Vectors in Lattices 2.8 Exercises for Chapter 2 Chapter 3 Algorithms on Polynomials 3.1 Basic Algorithms 3.1.1 Representation of Polynomials 3.1.2 Multiplication of Polynomials 3.1.3 Division of Polynomials 3.2 Euclid‘s Algorithms for Polynomials 3.2.1 Polynomials over a Field 3.2.2 Unique Factorization Domains (UFD‘s) 3.2.3 Polynomials over Unique Factorization Domains …… Chapter 4 Algorithms for Algebraic Number Theory Ⅰ Chapter 5 Algorithms for Quadratic Fields Chapter 6 Algorithms—for Algebraic Number Theory Ⅱ Chapter 7 Introduction to Elliptic Curves Chapter 8 Factoring in the Dark Ages Chapter 9 Modern Primality Tests Chapter 10 Modern Factoring Methods Appendix A Packages for Number Theory Appendix B Some Useful Tables Bibliography Index Errata et Addenda
以下为对购买帮助不大的评价