算术之钥 教学方法及理论 (伊朗)阿尔·卡西 原
none
¥
119.85
7.1折
¥
168
全新
库存2件
作者(伊朗)阿尔·卡西 原
出版社科学出版社
ISBN9787030460998
出版时间2016-01
版次1
装帧平装
开本16
页数514页
字数646千字
定价168元
货号xhwx_1201224866
上书时间2024-12-26
商品详情
- 品相描述:全新
-
正版特价新书
- 商品描述
-
目录:
序
导言
译者序
前言
引言 论算术的定义、数和数的种类
卷 论整数的算术运算(共六章)
章 论数的表示和数位的确定
第二章 论乘二、除二与加减运算
第三章 论乘法
第四章 论除法
第五章 论幂底数的确定
第六章 论准数
第二卷 论分数的算术运算(共十二章)
章 论分数的定义及其种类
第二章 论分数的写法
第三章 论倍分、同度、对立以及重合的确定
第四章 论带分数化分数和分数化带分数
第五章 论分数通分(即把不同分母的分数化成相同分母的分数)
第六章 论混合分数的简化
第七章 论乘二、除二与加减运算
第八章 论乘法
第九章 论除法
第十章 论幂底数的确定[论开方]
第十一章 论分数分母的转换
第十二章 论“当葛”、“塔苏吉”与“夏依尔”的相乘
第三卷 论天文学家的算法(共六章)
章 论“驻马拉”数字的确定和表示法
第二章 论乘二、除二与加减运算
第三章 论乘法
第四章 论除法
第五章 论幂底数的确定
第六章 论六十进制数字翻译[转换]成印度数字,反过来把印度数字翻译[转换]成六十进制数字,分数分母的转换与六十进制分数的确定
第四卷 论测量(由引言和九章组成)
引言 论测量的定义
章 论三角形的测量及其相关的三个部分
部 论三角形的定义及其分类
第二部 论三角形面积的计算与用已知量来求未知量
第三部 论等边三角形的测量,特别是用已知量来求未知量
第二章 论四边形的测量及其相关的五个部分
部 论四边形的定义
第二部 论正方形和长方形的测量以及用已知量来求未知量
第三部 论菱形和双手形的测量以及用已知量来求未知量
第四部 论近似菱形型与梯形的测量以及用已知量来求未知量
第五部 论双腿形型与斜四边形的测量
第三章 论多边形的测量及其相关的五个部分
部 论有关定义
第二部 论多边形测量的一般方法以及用已知量来求未知量
第三部 论等边等角多边形[正多边形]的其他质以及用已知量来求未知量
第四部 论等边等角六边形[正六边形]的其他质
第五部 论等边等角八边形的其他质以及相关距离的求法
第四章 论圆及其部分的测量(即扇形、弓形、圆环等部分的测量)和相关的五个部分
部 论有关定义
第二部 论圆的测量,由直径来确定其周长以及相反的问题,前言以及求面积的例子
第三部 论扇形和弓形的测量以及用已知量来确定未知量
第四部 论由我们在前面提到的各种弧线所围成图形面积的测量
第五部 论正弦表及其用法
第五章 论我们在前面没提到的其他面图形面积(即圆形、鼓形、阶梯形、弧边多边形、齿轮形等)的测量
第六章 论圆柱面、圆锥面、球面和其他类型曲面面积的测量(共六个部分)
部 论定义
第二部 论圆柱侧面的测量
第三部 论圆锥侧面的测量
第四部 论球表面积的测量以及直径的确定
第五部 论球缺球面部分表面积的测量以及用已知量来求未知量
第六部 论球切体球面部分表面积的测量
第七章 论物体的测量(共八个部分)
部 论圆柱的测量
第二部 论圆锥的测量和圆锥高的确定
第三部 论圆台的测量
第四部 论余圆锥与余菱形体的测量
第五部 论球体的测量
第六部 论球扇形体和球缺的测量
第七部 论等边多面体[正多面体]的测量
第八部 其他物体的测量
第八章 由重量来确定一些物体的体积及其相反问题
第九章 论房屋建筑的测量(共三个部分)
部 论弓形门的测量
第二部 论球形穹顶的测量
第三部 论钟孔石形表面积的测量
第五卷 论用还原与对消法、双设法来求未知数和其他算术法则(共四章)
章 论还原与对消法(共十个部分)
部 定义与例子
第二部 论含有数、物、方、立方等式子和其他式子的加法
第三部 论(多项式)减法
第四部 论(多项式)乘法
第五部 论(多项式)除法
第六部 论(多项式)开方与其他幂底数的确定
第七部 论代数方程的种类
第八部 论上面提到的六种方程的解法
第九部 论把问题化成含有上述量的六种方程之一及未知数的特征
第十部 论被我们发现的并且已承诺要介绍的问题
第二章 用双设法来求出未知数的值
第三章 求未知数的过程中需要的算术法则(共五十道法则)
第四章 有关热门问题的几个例子
部 共二十五个例子
第二部 论遗嘱(共八个例子)
第三部 为了吸引初学者以及使学数学成为其一种惯,将通过八个例子来介绍用几何法则来求出未知数的方法
附录
附录i 《圆周论》
部 论确定小于半圆周的圆弧所对弦、小于半圆周的圆弧与余弧的一半之和构成的圆弧所对弦之间的关系
第二部 论确定圆内接任意多边形的周长和圆外切相似多边形的周长
第三部 论为了得到与圆的周长之差小于马鬃之粗的多边形周长.应把上面提到的圆周几等分以及计算到几位[六十进制]数
第四部 论运算
第五部 确定圆内接正1、2、8、16、12、48边形的边长
第六部 论确定圆内接和外切相似正805306368边形的周长
第七部 论在上述算中位于后数位上的那些小分数的忽视及其意义
第八部 半径为一的周长值转换成印度数字
第九部 论以上两张表中的算法
第十部 论确定被学者们通常使用的数据与我们得到的数据之间的差别
结 论艾布·瓦法和阿布·热依汗(阿尔·比鲁尼)所犯错误的证明
附录ⅱ 译注者补充i 论《算数之钥》中第四类球形穹顶的测量
部 第四类球形穹顶的表面积与直径方之比的计算
第二部 球形穹顶的体积与直径立方之比的算法
附录ⅲ 译注者补充ⅱ 关于阿尔·卡西在结部分中给出的证明以及一些数据的说明
部 论《圆周论》中(3/2)°圆弧所对弦长的算法
第二部 艾布·瓦法给出的半度圆弧所对弦长和阿尔·卡西的证明
第三部 阿尔·卡西求二分之一度圆弧所对弦长的过程分析
第四部 二度圆弧所对的弦长与阿尔·比鲁尼的失误
第五部 论式(10)解的存在
参文献
内容简介:
由依里哈木玉素甫译注、李文林主编的本译著(书)算术之钥(1427年3月)(精)/丝绸之路数学名著译丛含有伊朗阿尔卡西的两部代表数学名著算术之钥和圆周论。其中算术之钥一书成书于1427年3月,共37章,涉及算数学、代数学、几何学、三角函数、数论、天文学、物理学、测量学、建筑学和法律学(遗产分配问题)等内容,被称为当时的百科全书。圆周论一书成书于1424年,包括十部内容和阿尔卡西本人补充的小结,主要是计算圆周率π和in1°的近似值。阅读本书的学者会发现,阿尔卡西不但具有惊人的计算能力,而且在某些领域取得了突破的成,大大了其前辈和同时代的其他学者。
— 没有更多了 —
正版特价新书
以下为对购买帮助不大的评价