preface 1.vectors,matrices,and arrays 1.0 introduction 1.1 creating a vector 1.2 creating a matrix 1.3 creating a sparse matrix 1.4 selecting elements 1.5 describing a matrix 1.6 applying operations to elements 1.7 fin the mamum and minimum values 1.8 calculating the average,variance,and standard deviation 1.9 reshaping arrays 1.10 transing a vector or matrix 1.11 flattening a matrix 1.12 fin the rank of a matrix 1.13 calculating the determinant 1.14 getting the diagonal of a matrix 1.15 calculating the trace of a matrix 1.16 fin eigenvalues and eigenvectors 1.17 calculating dot products 1.18 ad and subtracting matrices 1.19 multiplying matrices 1.20 inverting a matrix 1.21 generating random values 2.loa data 2.0 introduction 2.1 loa a sample dataset 2.2 creating a simulated dataset 2.3 loa a csv file 2.4 loa an excel file 2.5 loa a ]son file 2.6 querying a sql database 3.data wrangling 3.0 introduction 3.1 creating a data frame 3.2 describing the data 3.3 navigating dataframes 3.4 selecting rows based on conditionals 3.5 recing values 3.6 renaming columns 3.7 fin the minimum,mamum,sum,average,and count 3.8 fin unique values 3.9 handling missing values 3.10 deleting a column 3.11 deleting a row 3.12 dropping duplicate rows 3.13 grouping rows by values 3.14 grouping rows by time 3.15 looping over a column 3.16 applying a function over all elements in a column 3.17 applying a function to grou 3.18 concatenating dataframes 3.19 merging dataframes 4.handling numerical data 4.0 introduction 4.1 rescaling a feature 4.2 standardizing a feature 4.3 normalizing observations 4.4 generating polynomial and interaction features 4.5 transforming features 4.6 detecting outliers 4.7 handling outliers 4.8 discretizating features 4.9 grouping observations using clustering 4.10 deleting observations with missing values 4.11 imputing missing values …… 5.handling categorical data 6.handling text 7.handling dates and times 8.handling images 9.dimensionality reduction using feature extraction 10.dimensionality reduction using feature selection 11.model evaluation 12.model selection 13.linear regression 14.trees and forests 15.k-nearest neiors 16.logistic regression 17.support vector machines 18.naive bayes 19.clustering 20.neural works 21.saving and loa trained models index
以下为对购买帮助不大的评价