批量上传,套装书可能不全,下单前咨询在线客服!图书都是8-9成新,少量笔记,不影响阅读使用!光盘、学习卡、附件等默认不带,有特殊要求,下单前请咨询客服!
¥ 13.8 1.1折 ¥ 128 九品
库存3件
作者焦李成 著
出版社清华大学出版社
出版时间2017-07
版次1
装帧平装
货号9787302473671
上书时间2024-11-19
深度神经网络是近年来受到广泛关注的研究方向,它已成为人工智能2.0的主要组成部分。《深度学习、优化与识别》系统地论述了深度神经网络基本理论、算法及应用。《深度学习、优化与识别》全书共16章,分为两个部分;第一部分(第1章~10章)系统论述了理论及算法,包括深度前馈神经网络、深度卷积神经网络、深度堆栈神经网络、深度递归神经网络、深度生成网络、深度融合网络等;第二部分(第11~15章)论述了常用的深度学习平台,以及在高光谱图像、自然图像、SAR与极化SAR影像等领域的应用;第16章为总结与展望,给出了深度学习发展的历史图、前沿方向及进展。《深度学习、优化与识别》每章都附有相关阅读材料及仿真代码,以便有兴趣的读者进一步钻研探索。
《深度学习、优化与识别》可为高等院校计算机科学、电子科学与技术、信息科学、控制科学与工程、人工智能等领域的研究人员提供参考,以及作为相关专业本科生及研究生教学参考书,同时可供深度学习及其应用感兴趣的研究人员和工程技术人员参考。
焦李成,男,汉族,1959年10月生,1992年起任西安电子科技大学教授。现任智能感知与计算国际联合研究中心主任、智能感知与图像理解教育部重点实验室主任、智能感知与计算国际合作联合实验室主任、“智能信息处理科学与技术”高等学校学科创新引智基地(“111计划”)主任、教育部科技委国际合作部学部委员、中国人工智能学会副理事长、IET西安分会主席、IEEE西安分会奖励委员会主席、IEEE计算智能协会西安分会主席、IEEEGRSS西安分会主席,IEEETGRS副主编、教育部创新团队首席专家。国务院学位委员会学科评议组成员、教育部本科教学水平评估专家。1991年被批准为享受国务院政府津贴的专家,1996年首批入选国家“百千万”人才工程。当选为全国模范教师、陕西省师德标兵和曾任第八届全国人大代表。
焦李成教授的主要研究方向为智能感知与计算、图像理解与目标识别、深度学习与类脑计算,培养的十余名博士获全国优秀博士学位论文奖、提名奖及陕西省优秀博士论文奖。研究成果获包括国家自然科学奖二等奖及省部级一等奖以上科技奖励十余项,出版学术专著十余部,五次获国家优秀科技图书奖励及全国首届三个一百优秀图书奖。所发表的论著被他人引用超过25000余篇次,H指数为65。
目录
第1章深度学习基础
1.1数学基础
1.1.1矩阵论
1.1.2概率论
1.1.3优化分析
1.1.4框架分析
1.2稀疏表示
1.2.1稀疏表示初步
1.2.2稀疏模型
1.2.3稀疏认知学习、计算与识别的范式
1.3机器学习与神经网络
1.3.1机器学习
1.3.2神经网络
参考文献
第2章深度前馈神经网络
2.1神经元的生物机理
2.1.1生物机理
2.1.2单隐层前馈神经网络
2.2多隐层前馈神经网络
2.3反向传播算法
2.4深度前馈神经网络的学习范式
参考文献
第3章深度卷积神经网络
3.1卷积神经网络的生物机理及数学刻画
3.1.1生物机理
3.1.2卷积流的数学刻画
3.2深度卷积神经网络
3.2.1典型网络模型与框架
3.2.2学习算法及训练策略
3.2.3模型的优缺点分析
3.3深度反卷积神经网络
3.3.1卷积稀疏编码
3.3.2深度反卷积神经网络
3.3.3网络模型的性能分析与应用举例
3.4全卷积神经网络
3.4.1网络模型的数学刻画
3.4.2网络模型的性能分析及应用举例
参考文献
第4章深度堆栈自编码网络
4.1自编码网络
4.1.1逐层学习策略
4.1.2自编码网络
4.1.3自编码网络的常见范式
4.2深度堆栈网络
4.3深度置信网络/深度玻尔兹曼机网络
4.3.1玻尔兹曼机/受限玻尔兹曼机
4.3.2深度玻尔兹曼机/深度置信网络
参考文献
第5章稀疏深度神经网络
5.1稀疏性的生物机理
5.1.1生物视觉机理
5.1.2稀疏性响应与数学物理描述
5.2稀疏深度网络模型及基本性质
5.2.1数据的稀疏性
5.2.2稀疏正则
5.2.3稀疏连接
5.2.4稀疏分类器设计
5.2.5深度学习中关于稀疏的技巧与策略
5.3网络模型的性能分析
5.3.1稀疏性对深度学习的影响
5.3.2对比试验及结果分析
参考文献
第6章深度融合网络
6.1深度SVM网络
6.1.1从神经网络到SVM
6.1.2网络模型的结构
6.1.3训练技巧
6.2深度PCA网络
6.3深度ADMM网络
6.4深度极限学习机
6.4.1极限学习机
6.4.2深度极限学习机
6.5深度多尺度几何网络
6.5.1深度脊波网络
6.5.2深度轮廓波网络
6.6深度森林
6.6.1多分辨特性融合
6.6.2级联特征深度处理
参考文献
第7章深度生成网络
7.1生成式对抗网络的基本原理
7.1.1网络模型的动机
7.1.2网络模型的数学物理描述
7.2深度卷积对抗生成网络
7.2.1网络模型的基本结构
7.2.2网络模型的性能分析
7.2.3网络模型的典型应用
7.3深度生成网络模型的新范式
7.3.1生成式对抗网络的新范式
7.3.2网络框架的性能分析与改进
7.4应用驱动下的两种新生成式对抗网络
7.4.1堆栈生成式对抗网络
7.4.2对偶学习范式下的生成式对抗网络
7.5变分自编码器
参考文献
第8章深度复卷积神经网络与深度二值神经网络
8.1深度复卷积神经网络
8.1.1网络模型构造的动机
8.1.2网络模型的数学物理描述
8.2深度二值神经网络
8.2.1网络基本结构
8.2.2网络的数学物理描述
8.2.3讨论
参考文献
第9章深度循环和递归神经网络
9.1深度循环神经网络
9.1.1循环神经网络的生物机理
9.1.2简单的循环神经网络
9.1.3深度循环神经网络的数学物理描述
9.2深度递归神经网络
9.2.1简单的递归神经网络
9.2.2深度递归神经网络的优势
9.3长短时记忆神经网络
9.3.1改进动机分析
9.3.2长短时记忆神经网络的数学分析
9.4典型应用
9.4.1深度循环神经网络的应用举例
9.4.2深度递归神经网络的应用举例
参考文献
第10章深度强化学习
10.1深度强化学习简介
10.1.1深度强化学习的基本思路
10.1.2发展历程
10.1.3应用新方向
10.2深度Q网络
10.2.1网络基本模型与框架
10.2.2深度Q网络的数学分析
10.3应用举例——AlphaGo
10.3.1AlphaGo原理分析
10.3.2深度强化学习性能分析
参考文献
第11章深度学习软件仿真平台及开发环境
11.1Caffe平台
11.1.1Caffe平台开发环境
11.1.2AlexNet神经网络学习
11.1.3AlexNet神经网络应用于图像分类
11.2TensorFlow平台
11.2.1TensorFlow平台开发环境
11.2.2深度卷积生成式对抗网DCGAN
11.2.3DAN应用于样本扩充
11.3MXNet平台
11.3.1MXNet平台开发环境
11.3.2VGGNET深度神经网络学习
11.3.3图像分类应用任务
11.4Torch 7平台
11.4.1Torch 7平台开发环境
11.4.2二值神经网络
11.4.3二值神经网络应用于图像分类
11.5Theano平台
11.5.1Theano平台开发环境
11.5.2递归神经网络
11.5.3LSTM应用于情感分类任务
参考文献
第12章基于深度神经网络的SAR/PolSAR影像地物分类
12.1数据集及研究目的
12.1.1数据集特性分析
12.1.2基本数据集
12.1.3研究目的
12.2基于深度神经网络的SAR影像地物分类
12.2.1基于自适应自编码和超像素的SAR图像分类
12.2.2基于卷积中层特征学习的SAR图像分类
12.3基于第一代深度神经网络的PolSAR影像地物分类
12.3.1基于稀疏极化DBN的极化SAR地物分类
12.3.2基于深度PCA网络的极化SAR影像地物分类
12.4基于第二代深度神经网络的PolSAR影像地物分类
12.4.1基于深度复卷积网络的PolSAR影像地物分类
12.4.2基于生成式对抗网的PolSAR影像地物分类
12.4.3基于深度残差网络的PolSAR影像地物分类
参考文献
第13章基于深度神经网络的SAR影像的变化检测
13.1数据集特点及研究目的
13.1.1研究目的
13.1.2数据基本特性
13.1.3典型数据集
13.2基于深度学习和SIFT特征的SAR图像变化检测
13.2.1基本方法与实现策略
13.2.2对比试验结果分析
13.3基于SAE的SAR图像变化检测
13.3.1基本方法与实现策略
13.3.2实验结果和分析
13.4基于CNN的SAR图像变化检测
13.4.1基本方法与实现策略
13.4.2对比试验结果分析
参考文献
第14章基于深度神经网络的高光谱图像分类与压缩
14.1数据集及研究目的
14.1.1高光谱遥感技术
14.1.2高光谱遥感的研究目的
14.1.3常用的高光谱数据集
14.2基于深度神经网络的高光谱影像的分类
14.2.1基于堆栈自编码的高光谱影像的分类
14.2.2基于卷积神经网络的高光谱影像的分类
14.3基于深度神经网络的高光谱影像的压缩
14.3.1基于深度自编码网络的高光谱图像压缩方法
14.3.2实验设计及分类结果
参考文献
第15章基于深度神经网络的目标检测与识别
15.1数据特性及研究目的
15.1.1研究目的
15.1.2常用数据集
15.2基于快速CNN的目标检测与识别
15.2.1RCNN
15.2.2Fast RCNN
15.2.3Faster RCNN
15.2.4对比实验结果与分析
15.3基于回归学习的目标检测与识别
15.3.1YOLO
15.3.2SSD
15.3.3对比实验结果与分析
15.4基于学习搜索的目标检测与识别
15.4.1基于深度学习的主动目标定位
15.4.2AttentionNet
15.4.3对比实验结果与分析
参考文献
第16章总结与展望
16.1深度学习发展历史图
16.1.1从机器学习、稀疏表示学习到深度学习
16.1.2深度学习、计算与认知的范式演进
16.1.3深度学习形成脉络
16.2深度学习的应用介绍
16.2.1目标检测与识别
16.2.2超分辨
16.2.3自然语言处理
16.3深度神经网络的可塑性
16.3.1旋转不变性
16.3.2平移不变性
16.3.3多尺度、多分辨和多通路特性
16.3.4稀疏性
16.4基于脑启发式的深度学习前沿方向
16.4.1生物神经领域关于认知、识别、注意等的最新研究进展
16.4.2深度神经网络的进一步研究方向
16.4.3深度学习的可拓展性
参考文献
附录A基于深度学习的常见任务处理介绍
附录B代码介绍
— 没有更多了 —
以下为对购买帮助不大的评价