• 交换代数:Commutative Algebra With a View Toward Algebraic Geometry
21年品牌 40万+商家 超1.5亿件商品

交换代数:Commutative Algebra With a View Toward Algebraic Geometry

170 全新

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者艾森巴德(David Eisenbud) 著;世界图书出版公司北京公司 编

出版社世界图书出版公司

出版时间2004-01

版次1

装帧平装

上书时间2024-12-30

   商品详情   

品相描述:全新
图书标准信息
  • 作者 艾森巴德(David Eisenbud) 著;世界图书出版公司北京公司 编
  • 出版社 世界图书出版公司
  • 出版时间 2004-01
  • 版次 1
  • ISBN 9787506292450
  • 定价 118.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 797页
  • 正文语种 英语
【内容简介】
ThisbookprovidesanintroductiontoLiegroups,Liealgebras,andrepresentationtheory,aimedatgraduatestudentsinmathematicsandphysics.Althoughtherearealreadyseveralexcellentbooksthatcovermanyofthesametopics,thisbookhastwodistinctivefeaturesthatIhopewillmakeitausefuladditiontotheliterature.First,ittreatsLiegroups(notjustLiealgebras)inawaythatminimizestheamountofmanifoldtheoryneeded.Thus,Ineitherassumeapriorcourseondifferentiablemanifoldsnorprovideacon-densedsuchcourseinthebeginningchapters.Second,thisbookprovidesagentleintroductiontothemachineryofsemisimplegroupsandLiealgebrasbytreatingtherepresentationtheoryofSU(2)andSU(3)indetailbeforegoingtothegeneralcase.Thisallowsthereadertoseeroots,weights,andtheWeylgroup"inaction"insimplecasesbeforeconfrontingthegeneraltheory.
ThestandardbooksonLietheorybeginimmediatelywiththegeneralcase:asmoothmanifoldthatisalsoagroup.TheLiealgebraisthendefinedasthespaceofleft-invariantvectorfieldsandtheexponentialmappingisdefinedintermsoftheflowalongsuchvectorfields.Thisapproachisundoubtedlytherightoneinthelongrun,butitisratherabstractforareaderencounteringsuchthingsforthefirsttime.Furthermore,withthisapproach,onemusteitherassumethereaderisfamiliarwiththetheoryofdifferentiablemanifolds(whichrulesoutasubstantialpartofonesaudience)oronemustspendconsiderabletimeatthebeginningofthebookexplainingthistheory(inwhichcase,ittakesalongtimetogettoLietheoryproper).
【作者简介】








D.Eisenbud,加利福尼亚大学(University of California)数学系教授。加州大学,位于美国加州的一个由数所公立大学组成的大学系统,也是世界上影响力的公立大学系统,被誉为‘全世界好的公立大学‘和‘公立高等教育的典范‘。




【目录】
Introduction
AdvicefortheBeginner
InformationfortheExpert
Prerequisites
Sources
Courses
Acknowledgements

0ElementaryDefinitions
0.1RingsandIdeals
0.2UniqueFactorization
0.3Modules

ⅠBasicConstructions
1RootsofCommutativeAlgebra
1.1NumberTheory
1.2AlgebraicCurvesandFhnctionTheory
1.3InvariantTheory
1.4TheBasisTheorem
1.5GradedRings
1.6AlgebraandGeometry:TheNullstellensatz
1.7GeometricInvariantTheory
1.8ProjectiveVarieties
1.9HilbertFunctionsandPolynomials
1.10FreeResolutionsandtheSyzygyTheorem
1.11Exercises

2Localization
2.1Fractions
2.2HornandTensor
2.3TheConstructionofPrimes
2.4RingsandModulesofFiniteLength
2.5ProductsofDomains
2.6Exercises

3AssociatedPrimesandPrimaryDecomposition
3.1AssociatedPrimes
3.2PrimeAvoidance
3.3PrimaryDecomposition
3.4PrimaryDecompositionandFactoriality
3.5PrimaryDecompositionintheGradedCase
3.6ExtractingInformationfromPrimaryDecomposition
3.7WhyPrimaryDecompositionIsNotUnique
3.8GeometricInterpretationofPrimaryDecomposition
3.9SymbolicPowersandFunctionsVanishingtoHighOrder
3.10Exercises

4IntegralDependenceandtheNullstellensatz
4.1TheCayley-HamiltonTheoremandNakayamasLemma
4.2NormalDomainsandtheNormalizationProcess
4.3NormalizationintheAnalyticCase
4.4PrimesinanIntegralExtension
4.5TheNullstellensatz
4.6Exercises

5FiltrationsandtheArtin-ReesLemma
5.1AssociatedGradedRingsandModules
5.2TheBlowupAlgebra
5.3TheKrullIntersectionTheorem
5.4TheTangentCone
5.5Exercises

6FlatFamilies
6.1ElementaryExamples
6.2IntroductiontoTor
6.3CriteriaforFlatness
6.4TheLocalCriterionforFlatness
6.5TheReesAlgebra
6.6Exercises

7CompletionsandHenselsLemma
7.1ExamplesandDefinitions
7.2TheUtilityofCompletions
7.3LiftingIdempotents
7.4CohenStructureTheoryandCoefficientFields
7.5BasicPropertiesofCompletion
7.6MapsfromPowerSeriesRings
7.7Exercises

ⅡDimensionTheory
8IntroductiontoDimensionTheory
8.1AxiomsforDimension
8.2OtherCharacterizationsofDimensionFundamentalDefinitionsofDimensionTheory
9.1DimensionZero
9.2Exercises

10ThePrincipalIdealTheoremandSystemsofParameters
10.1SystemsofParametersandIdealsofFiniteColength
10.2DimensionofBaseandFiber
10.3RegularLocalRings
10.4Exercises

11DimensionandCodimensionOne
11.1DiscreteValuationRings
11.2NormalRingsandSerresCriterion
11.3InvertibleModules
11.4UniqueFactorizationofCodimension-OneIdeals
11.5DivisorsandMultiplicities
11.6MultiplicityofPrincipalIdeals
11.7Exercises

12DimensionandHilbert-SamuelPolynomials
12.1Hilbert-SamuelFunctions
12.2Exercises

13TheDimensionofAffineRings
13.1NoetherNormalization
13.2TheNullstellensatz
13.3FinitenessoftheIntegralClosure
13.4Exercises

14EliminationTheory,GenericFreeness,andtheDimensionofFibers
14.1EliminationTheory
14.2GenericPreeness
14.3TheDimensionofFibers
14.4Exercises

15GrSbnerBases
15.1MonomialsandTerms
15.2MonomialOrders
15.3TheDivisionAlgorithm
15.4Gr5bnerBases
15.5Syzygies
15.6HistoryofGr5bnerBases
15.7APropertyofReverseLexicographicOrder
15.8Gr5bnerBasesandFlatFamilies
15.9GenericInitialIdeals
15.10Applications
15.11Exercises
15.12Appendix:SomeComputerAlgebraProjects

16ModulesofDifferentials
16.1ComputationofDifferentials
16.2DifferentialsandtheCotangentBundle
16.3ColimitsandLocalization
16.4TangentVectorFieldsandInfinitesimalMorphisms
16.5DifferentialsandFieldExtensions
16.6JacobianCriterionforRegularity
16.7SmoothnessandGenericSmoothness
16.8Appendix:AnotherConstructionofKahlerDifferentials
16.9Exercises

ⅢHomologicalMethods
17RegularSequencesandtheKoszulComplex
17.1KoszulComplexesofLengthsIand2
17.2KoszulComplexesinGeneral
17.3BuildingtheKoszulComplexfromParts
17.4DualityandHomotopies
17.5TheKoszulComplexandtheCotangentBundleofProjectiveSpace
17.6Exercises

18Depth,Codimension,andCohen-MacaulayRings
18.1Depth
18.2Cohen-MacaulayRings
18.3ProvingPrimenesswithSerresCriterion
18.4FlatnessandDepth
18.5SomeExamples
18.6Exercises

19HomologicalTheoryofRegularLocalRings
19.1ProjectiveDimensionandMinimalResolutions
19.2GlobalDimensionandtheSyzygyTheorem
19.3DepthandProjectiveDimension:TheAuslander-BuchsbaumFormula
19.4StablyFreeModulesandFactorialityofRegularLocalRings
19.5Exercises

20FreeResolutionsandFittingInvariants
20.1TheUniquenessofFreeResolutions
20.2FittingIdeals
20.3WhatMakesaComplexExact?
20.4TheHilbert-BurchTheorem
20.5Castelnuovo-MumfordRegularity
20.6Exercises

21Duality,CanonicalModules,andGorensteinRings
21.1DualityforModulesofFiniteLength
21.2Zero-DimensionalGorensteinRings
21.3CanonicalModulesandGorensteinRingsinHigherDimension
21.4MaximalCohen-MacaulayModules
21.5ModulesofFiniteInjectiveDimension
21.6Uniquenessand(Often)Existence
21.7LocalizationandCompletionoftheCanonicalModule
21.8CompleteIntersectionsandOtherGorensteinRings
21.9DualityforMaximalCohen-MacaulayModules
21.10Linkage
21.11DualityintheGradedCase
21.12Exercises

Appendix1FieldTheory
A1.1TranscendenceDegree
A1.2Separability
A1.3p-Bases

Appendix2MultilinearAlgebra
A2.1Introduction
A2.2TensorProducts
A2.3SymmetricandExteriorAlgebras
A2.4CoalgebraStructuresandDividedPowers
A2.5SchurFunctors
A2.6ComplexesConstructedbyMultilinearAlgebra

Appendix3HomologicalAlgebra
A3.1Introduction
PartI:ResolutionsandDerivedFunctors
A3.2FreeandProjectiveModules
A3.3FreeandProjectiveResolutions
A3.4InjectiveModulesandResolutions
A3.5BasicConstructionswithComplexes
A3.6MapsandHomotopiesofComplexes
A3.7ExactSequencesofComplexes
A3.8TheLongExactSequenceinHomology
A3.9DerivedFunctors
A3.10Tor
A3.11Ext

PartⅡI:FromMappingConestoSpectralSequences
A3.12TheMappingConeandDoubleComplexes
A3.13SpectralSequences
A3.14DerivedCategories

Appendix4ASketchofLocalCohomology
A4.1LocalCohomologyandGlobalCohomology
A4.2LocalDuality
A4.3DepthandDimension

Appendix5CategoryTheory
A5.1Categories,Functors,andNaturalTransformations
A5.2AdjointFunctors
A5.3RepresentableFunctorsandYonedasLemma

Appendix6LimitsandColimits
A6.1ColimitsintheCategoryofModules
A6.2FlatModulesasColimitsofFreeModules
A6.3ColimitsintheCategoryofCommutativeAlgebras
A6.4Exercises

Appendix7WhereNext
HintsandSolutionsforSelectedExercises
References
IndexofNotation
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP