计算数论(英文)
¥
66
4.5折
¥
148
九五品
仅1件
作者阿比吉特.达斯
出版社哈尔滨工业大学出版社
出版时间2021-11
版次1
装帧其他
货号9787560397375
上书时间2024-12-23
商品详情
- 品相描述:九五品
图书标准信息
-
作者
阿比吉特.达斯
-
出版社
哈尔滨工业大学出版社
-
出版时间
2021-11
-
版次
1
-
ISBN
9787560397375
-
定价
148.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
611页
-
字数
626.000千字
- 【内容简介】
-
本书是一部英文版的大学教科书,属于离散数学及其应用系列,其主编为Kenneth H.Rosen。本书的中文书名为《计算数论》,作者为Abhijit Das。
本书发展自作者广受欢迎的研究生课程,计算数论展示了一个完整的数论算法,为避免高等代数,这本自洽的教材面向的读者对象为高年级本科生以及工程方面的研究生。同时它也适用于刚进入该领域的研究者和行业中密码学的从业者。
- 【目录】
-
preface
1 arithmetic cf integers
1.1 basic aiithmetic operations
1.1.1 representation of big integers
1.1.1.1 inlzut and output
1.1.2 schoolbock arithmetic
1.1.2.1 addition
1.1.2.2 subtraction
1.1.2.3 multiplication
1.1.2.4 euclidean division
1.1.3 fast arithmetic
1.1.3.1 karatsuba-ofman multiplication
1.1.3.2 toom-cook multiplicati
1.1.3.3 fft-based multiplication
1.1.4 an introduction to gp/pari
1.2
1.2.1 euclidean algorithm
1.2.2 extended algorithm
1.2.3 binary algorithm
1.3 congruences and modular arithmetic
1.3.1 modular exponentiation
1.3.2 fast modular exponentiation
1.4 linear congruences
1.4.1 chinese remainder theorem
1.5 polynomial cgruences
1.5.1 hensel lifting
1.6 quadratic congruences
1.6.1 quadratic residues and non-residues
1.6.2 legendre symbol
1.6.3 jaeobi symbol
1.7 multiplicative orders
1.7.1 primitive roots
1.7.2 l:uting orders
1.8 continued fractions
1.8.1 finite continued fractions
1.8.2 infinite continued fractions
1.9 prime number theorem and riemann hypothesis
1.10 running times of arithmetic algorithms
2 arithmetic of finite fields
2.1 estence and uniqueness of finite fields
2.2 representation of finite fields
2.2.1 polynomial-basis representation
2.2.2 working with finite fields in gp/pari
2.2.3 choice of the defining polynomial
2.3 implementation of finite field arithmetic
2.3.1 representation of elements
2.3.2 polynomial arithmetic
2.3.2.1 addition and subtraction
2.3.2.2 multiplication
2.3.2.3 b methods
2.3.2.4 windowed b methods
2.3.2.5 modular reduction
2.3.3 polynomial and inverse
2.3.3.1 euclidean inverse
2.3.3.2 binary inverse
2.3.3.3 almost inverse
2.4 some properties of finite fields
2.4.1 fermats little theorem for finite fields
2.4.2 multiplicative orders of elements in finite fields
2.4.3 normal elements
2.4.4 minimal polynomials
2.4.5 implementing some functions in gp/pari
2.5 alternative representations of finite fields
2.5.1 representation with respect to arbitrary bases
2.5.2 normal and optimal normal bases
2.5.3 discrete-log representation
2.5.4 representation with towers of extensions
2.6 puting isomorphisms among representations
3 arithmetic of polynomials
3.1 polynomials over finite fields
3.1.1 polynomial arithmetic
3.1.2 irreducible polynomials over finite fields
3.1.3 testing irreducibility of polynomials
3.1.4 handling irreducible polynomials in gp/pari
3.2 fin roots of polynomials over finite fields
3.2.1 algorithm for fields of odd characteristics
3.2.2 algorithm for fields of characteristic two
3.2.3 root fin with gp/pari
3.3 factoring polynomials over finite fields
3.3.1 square-free factorization
3.3.2 distinct-degree factorization
3.3.3 equal-degree factorization
3.3.4 factoring polynomials in gp/pari
3.4 properties of polynomials with integer coefficients
3.4.1 relation with polynomials with rational coefficients.
3.4.2 height, resultant, and discriminant
3.4.3 hensel lifting
3.5 factoring polynomials with integer coefficients
3.5.1 berlekam factoring algorithm
3.5.2 basis reduction in lattices
3.5.3 lenstra-lenstra-lov~sz factoring algorithm
3.5.4 factoring in gp/pari
4 arithmetic of elliptic curves
4.1 what is an elliptic curve?
4.2 elliptic-curve group
4.2.1 handling elliptic curves in gp/pari
4.3 elliptic curves over finite fields
4.4 some theory of algebraic curves
4.4.1 affine and projective curves
4.4.1.1 affine curves
4.4.1.2 projective curves
……
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价