• 微分方程的分析力学方法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

微分方程的分析力学方法

微分方程的分析力学方法 z ax预售 介意者慎拍 拍下即表示认可 祝您购物愉快! 版次更新不同步 以实际收到书为准

98 全新

库存3件

北京通州
认证卖家担保交易快速发货售后保障

作者梅凤翔、吴惠彬 著

出版社科学出版社

出版时间2012-03

版次1

装帧精装

上书时间2024-10-24

北京经济网上书店

十一年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 梅凤翔、吴惠彬 著
  • 出版社 科学出版社
  • 出版时间 2012-03
  • 版次 1
  • ISBN 9787030337139
  • 定价 98.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 263页
  • 字数 331千字
  • 正文语种 简体中文
【内容简介】
  《微分方程的分析力学方法》全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi最终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。《微分方程的分析力学方法》可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
【目录】
前言

第一章 微分方程的力学化
1.1 微分方程的Lagrange化
1.1.1 一阶方程组的Lagrange化
1.1.2 一阶方程组的部分Lagrange化
1.1.3 二阶方程组的Lagrange化
1.1.4 二阶方程组借助辅助变量的Lagrange化
1.1.5 二阶方程组的部分Lagrange化
1.1.6 例题
习题
1.2 微分方程的Hamilton化
1.2.1 微分方程的直接Hamilton化
1.2.2 微分方程的间接Hamilton化
1.2.3 借助辅助变量的Hamilton化
1.2.4 微分方程的部分Hamilton化
1.2.5 例题
习题
1.3 微分方程的Birkhoff化
1.3.1 Santilli第一方法
1.3.2 Santilli第二方法
1.3.3 Hojman方法
1.3.4 自治系统Birkhoff函数的构造
1.3.5 微分方程的部分Birkhoff化
1.3.6 例题
习题
参考文献

第二章 微分方程的降阶法
2.1 微分方程Lagrange化后的降阶法
2.1.1 Routh降阶法
2.1.2 Whittaker降阶法
2.1.3 例题
习题
2.2 微分方程Hamilton化后的降阶法
2.2.1 有循环坐标的情形
2.2.2 Whittaker降阶法
2.2.3 例题
习题
2.3 微分方程Birkhoff化后的降阶法
2.3.1 利用循环积分的降阶法
2.3.2 利用能量积分的降阶法
2.3.3 例题
习题
参考文献

第三章 微分方程的Hamilton-Jacobi方法
3.1 微分方程的Hamilton化
3.1.1 微分方程的直接Hamilton化
3.1.2 微分方程的间接Hamilton化
3.1.3 微分方程借助辅助变量的Hamilton化
3.1.4 例题
习题
3.2 Hamilton-Jacobi方法及其应用
3.2.1 Hamilton-Jacobi定理
3.2.2 Hamilton-Jacobi方法的应用
3.2.3 例题
习题
3.3 Hamilton-Jacobi方法的推广
3.3.1 Hamilton-Jacobi方法的推广
3.3.2 微分方程的部分Hamilton化
3.3.3 例题
习题
参考文献

第四章 微分方程的Poisson方法
4.1 微分方程Hamilton化后的Poisson方法
4.1.1 Hamilton化后的Poisson方法
4.1.2 部分Hamilton化后的广义Poisson方法
4.1.3 例题
习题
4.2 微分方程Lagrange化后的Poisson方法
4.2.1 Lagrange化后的Poisson方法
4.2.2 部分Lagrange化后的广义Poisson方法
4.2.3 例题
习题
4.3 微分方程Birkhoff化后的Poisson方法
4.3.1 Birkhoff化后的广义Poisson方法
4.3.2 部分Birkhoff化后的广义Poisson方法
4.3.3 例题
习题
参考文献

第五章 微分方程的Noether方法
5.1 微分方程Lagrange化后的Noether方法
5.1.1 Lagrange化后的Noether方法
5.1.2 部分Lagrange化后的Noether方法
5.1.3 借助辅助变量Lagrange化后的Noether方法
5.1.4 例题
习题
5.2 微分方程Hamilton化后的Noether方法
5.2.1 Hamilton化后的Noether方法
5.2.2 部分Hamilton化后的Noether方法
5.2.3 借助辅助变量Hamilton化后的Noether方法
5.2.4 例题
习题
5.3 微分方程Birkhoff化后的Noether方法
5.3.1 Birkhoff化后的Noether方法
5.3.2 部分Birkhoff化后的Noether方法
5.3.3 例题
习题
参考文献

第六章 微分方程的Hojman方法
6.1 Hojman方法及其推广
6.1.1 Hojman定理
6.1.2 Hojman定理的推广
6.2 Hojman方法的应用
6.2.1 对于一阶方程的应用
6.2.2 对于二阶方程的应用
6.2.3 对于高阶方程的应用
习题
参考文献

第七章 微分方程的场方法
7.1 场方法
7.1.1 场方法
7.1.2 场方法对于力学系统的某些应用
7.2 求解微分方程的场方法
7.2.1 对于一阶方程的应用
7.2.2 对于二阶方程的应用
7.2.3 对于高阶方程的应用
习题
参考文献

第八章 微分方程的势积分方法
8.1 势积分方法
8.1.1 势积分方法介绍
8.1.2 势积分方法的简单应用
8.2 微分方程的势积分方法
8.2.1 对于一阶方程的应用
8.2.2 对于二阶方程的应用
8.2.3 对于高阶方程的应用
习题
参考文献

第九章 微分方程的共形不变性
9.1 一阶微分方程组的共形不变性与积分
9.1.1 一阶方程组的共形不变性
9.1.2 共形不变性导致的Hojman守恒量
9.1.3 共形不变性导致的Noether守恒量
9.2 二阶微分方程组的共形不变性与积分
9.2.1 二阶方程组的共形不变性
9.2.2 共形不变性导致的Hojman守恒量
9.2.3 共形不变性导致的Noether守恒量
习题
参考文献

第十章 微分方程的Jacobi最终乘子
10.1 一般微分方程组的Jacobi最终乘子
10.1.1 最终乘子
10.1.2 由两个乘子导出积分
10.1.3 对Lagrange力学逆问题的应用
10.2 Hamilton系统的最终乘子
10.2.1 最终乘子对Hamilton系统的应用
10.2.2 例题
10.3 广义Hamilton系统的最终乘子
10.3.1 广义Hamilton系统的方程
10.3.2 广义Hamilton系统的最终乘子
10.3.3 最终乘子法的应用
10.3.4 例题
10.4 Birkhoff系统的最终乘子
10.4.1 Birkhoff系统的最终乘子
10.4.2 最终乘子法的应用
10.4.3 广义Birkhoff系统的最终乘子
10.5 最终乘子对微分方程积分的应用
10.5.1 微分方程的Hamilton化与最终乘子
10.5.2 微分方程的广义Hamilton化与最终乘子
10.5.3 微分方程的Birkhoff化与最终乘子
习题
参考文献

第十一章 微分方程的Lagrange方法与Birkhoff方法
11.1 微分方程的Lagrange方法
11.1.1 微分方程的Lagrange化
11.1.2 微分方程的Lagrange对称性与积分
11.1.3 例题
11.2 微分方程的Birkhoff方法
11.2.1 微分方程的Birkhoff化
11.2.2 微分方程的Birkhoff对称性与积分
11.2.3 例题
习题
参考文献

第十二章 微分方程的力学化与稳定性
12.1 Lyapunov稳定性的一些结论
12.1.1 Lyapunov稳定性
12.1.2 部分变量稳定性
12.1.3 例题
12.2 Lagrange化与稳定性
12.2.1 一般理论
12.2.2 例题
习题
12.3 Hamilton化与稳定性
12.3.1 一般理论
12.3.2 例题
习题
12.4 Birkhoff化与稳定性
12.4.1 一般理论
12.4.2 例题
习题
参考文献
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP