¥ 10.36 1.3折 ¥ 79 九品
仅1件
作者黄文青 著
出版社电子工业出版社
出版时间2018-05
版次1
装帧平装
上书时间2024-11-17
Python 已成为广受数据科学领域欢迎的开发语言。本书契合这一趋势,结合具体的业务场景,从数据思维的角度出发,剖析各业务环节中数据处理的策略、算法,并运用Python 代码呈现翔实的案例,构建出一个完整的数据分析体系。
在内容的组织和安排上,本书层次分明、详略得当:针对简单的数据分析工作,读者可以先浏览第1 章至第3 章;专职从事数据分析的工程师可以通篇阅读本书,以构建数据处理工程的完整知识框架;最后一章针对从事大数据分析的工程师提供了一些常见问题的解决思路和方法。
本书既适合刚接触数据工程的从业人员作为入门参考,也可以帮助具有一定经验的数据工程师搭建知识体系,洞悉业务场景中的数据奥秘,得心应手地运用数据指导业务。
黄文青,目前在百度公司任职,从事大数据、机器学习方向的研究与学习。对于如果成为一名数据工程师,有自己独特的理解与实践。
1 概述 / 1
1.1 何为数据工程师 / 1
1.2 数据分析的流程 / 3
1.3 数据分析的工具 / 11
1.4 大数据的思与辨 / 14
2 关于Python / 17
2.1 为什么是Python / 17
2.2 常用基础库 / 19
2.2.1 Numpy / 19
2.2.2 Pandas / 26
2.2.3 Scipy / 37
2.2.4 Matplotlib / 38
3 基础分析 / 43
3.1 场景分析与建模策略 / 43
3.1.1 统计量 / 43
3.1.2 概率分布 / 48
3.2 实例讲解 / 55
3.2.1 谁的成绩更优秀 / 55
3.2.2 应该库存多少水果 / 57
4 数据挖掘 / 60
4.1 场景分析与建模策略 / 60
4.1.1 分类 / 61
4.1.2 聚类 / 76
4.1.3 回归 / 86
4.1.4 关联规则 / 90
4.2 数据挖掘的重要概念 / 93
4.2.1 数据预处理 / 93
4.2.2 评估与验证 /97
4.2.3 Bagging 与Adaboost / 99
4.2.4 梯度下降与牛顿法 / 102
4.3 实例讲解 /105
4.3.1 信用卡欺诈监测 / 105
4.3.2 员工离职预判 /110
5 深度学习/ 114
5.1 场景分析与建模策略 / 115
5.1.1 感知机 / 115
5.1.2 自编码器 / 119
5.1.3 限制玻尔兹曼机 /123
5.1.4 深度信念神经网络 / 127
5.1.5 卷积神经网络 / 129
5.2 人工智能应用概况 / 137
5.2.1 深度学习的历史 /137
5.2.2 人工智能的杰作 / 140
5.3 实例讲解 / 146
5.3.1 学习识别手写数字 / 146
5.3.2 让机器认识一只猫 / 151
6 大数据分析 / 160
6.1 常用组件介绍 / 160
6.1.1 数据传输 / 165
6.1.3 数据计算 / 174
6.1.4 数据展示 / 180
6.2 大数据处理架构 / 188
6.2.1 Lambda 架构 / 189
6.2.2 Kappa 架构 / 192
6.2.3 ELK 架构 / 193
6.3 项目设计 / 194
参考文献 / 202
— 没有更多了 —
以下为对购买帮助不大的评价