机器学习:贝叶斯和优化方法(英文版 原书第2版)
书籍均为精品二手图书品相85品以上,出库会经过高温消毒,书籍上架都会检测可保证正版!!
¥
47
1.6折
¥
299
八品
仅1件
作者西格尔斯·西奥多里蒂斯
出版社"机械工业出版社
ISBN9787111668374
出版时间2020
装帧平装
开本16开
纸张胶版纸
定价299元
货号1338348229506372259
上书时间2024-11-20
商品详情
- 品相描述:八品
-
本店所售书籍均精品二手正版书书籍,严格审核品相为85品以上,出库会经过高温消毒,由于成本增加,所售书籍价格略高,运费首本5元,每增加一本运费加2元,每天下午2点前订单一般当天发出,最迟48小时内发出,二手书不保证100%没有任何笔记,有时会出现缺货现象,我们会第一时间告知您,感谢理解与支持。
- 商品描述
-
以下信息以网上匹配仅供参考,不支持以此为由退款
内容简介:
本书通过讲解监督学习的两大支柱――回归和分类――将机器学习纳入统一视角展开讨论。书中首先讨论基础知识,包括均方、*小二乘和*大似然方法、岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍新近的技术,包括稀疏建模方法,再生核希尔伯特空间中的学习、支持向量机中的学习、关注EM算法的贝叶斯推理及其近似推理变分版本、蒙特卡罗方法、聚焦于贝叶斯网络的概率图模型、隐马尔科夫模型和粒子滤波。此外,本书还深入讨论了降维和隐藏变量建模。全书以关于神经网络和深度学习架构的扩展章节结束。此外,书中还讨论了统计参数估计、维纳和卡尔曼滤波、凸性和凸优化的基础知识,其中,用一章介绍了随机逼近和梯度下降族的算法,并提出了分布式优化的相关概念、算法和在线学习技术。
目录:
Prefaceiv
Acknowledgmentsvi
About the Authorviii
Notationix
CHAPTER1 Introduction1
11 The Historical Context1
12 Artificia Intelligenceand Machine Learning2
13 Algorithms Can Learn WhatIs Hidden in the Data4
14 Typical Applications of Machine Learning6
Speech Recognition6
Computer Vision6
Multimodal Data6
Natural Language Processing7
Robotics7
Autonomous Cars7
Challenges for the Future8
15 Machine Learning: Major Directions8
151 Supervised Learning8
16 Unsupervised and Semisupervised Learning11
17 Structure and a Road Map of the Book12
References16
CHAPTER2 Probability and Stochastic Processes19
21 Introduction20
22 Probability and Random Variables20
221 Probability20
222 Discrete Random Variables22
223 Continuous Random Variables24
224 Meanand Variance25
225 Transformation of Random Variables28
23 Examples of Distributions29
231 Discrete Variables29
232 Continuous Variables32
24 Stochastic Processes41
241 First-and Second-Order Statistics42
242 Stationarity and Ergodicity43
243 Power Spectral Density46
244 Autoregressive Models51
25 Information Theory54
251 Discrete Random Variables56
252 Continuous Random Variables59
26 Stochastic Convergence61
Convergence Everywhere62
Convergence Almost Everywhere62
Convergence in the Mean-Square Sense62
Convergence in Probability63
Convergence in Distribution63
Problems63
References65
CHAPTER3 Learning in Parametric Modeling: Basic Concepts and Directions67
31 Introduction67
32 Parameter Estimation: the Deterministic Point of View68
33 Linear Regression71
34Classifcation75
Generative Versus Discriminative Learning78
35 Biased Versus Unbiased Estimation80
351 Biased or Unbiased Estimation?81
36 The CramrRao Lower Bound83
37 Suffcient Statistic87
38 Regularization89
Inverse Probl
— 没有更多了 —
本店所售书籍均精品二手正版书书籍,严格审核品相为85品以上,出库会经过高温消毒,由于成本增加,所售书籍价格略高,运费首本5元,每增加一本运费加2元,每天下午2点前订单一般当天发出,最迟48小时内发出,二手书不保证100%没有任何笔记,有时会出现缺货现象,我们会第一时间告知您,感谢理解与支持。
以下为对购买帮助不大的评价